STORMWATER MANAGEMENT REPORT

PROJECT SITE:
SHINGLEMILL APARTMENTS
0 POND STREET
ROCKLAND, MASSACHUSETTS 02370

PREPARED FOR:
SHINGLEMILL, LLC
4 FIRST STREET
BRIDGEWATER, MASSACHUSETTS 02324

PREPARED BY:

4 First Street • Bridgewater, Massachusetts

02324 Phone: (508) 697-3191 • Fax: (508) 697-5996 E-mail: JNovak@coneco.com

MAY 14, 2020

TABLE OF CONTENTS

MASSACHUSETTS DEP CHECKLIST FOR STORMWATER REPORT

INTRODUCTION

STORMWATER MANAGEMENT SYSTEM OVERVIEW

METHODOLOGY

EXISTING CONDITIONS

Table 1 Existing Soil Classifications

PROPOSED CONDITIONS

STORMWATER MANAGEMENT STANDARDS REVIEW

Table 2 Peak Rate of Runoff & Total Volume

Table 3 Recharge to Groundwater

Table 4 Total Suspended Solids Removal

CONCLUSION/SUMMARY

LIST OF FIGURES

Figure 1 Aerial Map

Figure 2 USGS Topographic Map

Figure 3 Flood Insurance Rate Map

Figure 4 Natural Heritage Map

Figure 5 Critical Areas

Figure 6 Soil Survey Map

Figure 7 Existing Drainage Areas

Figure 8 Proposed Drainage Areas

APPENDIX A - EXISTING HYDROLOGICAL CONDITIONS

HydroCAD Analysis Printouts for 2-yr, 10-yr, 25-yr, & 100-yr Storm Events

APPENDIX B - PROPOSED HYDROLOGICAL CONDITIONS

HydroCAD Analysis Printouts for 2-yr, 10-yr, 25-yr & 100-yr Storm Events

APPENDIX C - DRAINAGE SYSTEM CALCULATIONS

APPENDIX D - LONG TERM POLLUTION PREVENTION PLAN

APPENDIX E - OPERATION AND MAINTENANCE PLAN, CHECKLIST AND LOG

APPENDIX F - SOIL LOGS

APPENDIX G - ILLICIT DISCHARGE COMPLIANCE STATEMENT

APPENDIX H - STORMCEPTOR SIZING REPORTS AND OWNERS MANUAL

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

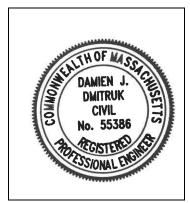
² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date 5/14/2020

Checklist

	Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?				
\boxtimes	New development				
	Redevelopment				
	Mix of New Development and Redevelopment				

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	☐ Credit 1
	☐ Credit 2
	☐ Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
\boxtimes	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges
\boxtimes	No new untreated discharges
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	necklist (contin	nued)			
Sta	andard 2: Peak Ra	te Attenuation			
	Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.				
	Calculations provided to show that post-development peak discharge rates do not exceed pre- development rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24- hour storm.				
Sta	andard 3: Recharge	Э			
\boxtimes	Soil Analysis provi	ded.			
\boxtimes	Required Recharg	e Volume calculation provid	ded.		
	Required Recharg	e volume reduced through	use of the LID site Design Credits.		
\boxtimes	Sizing the infiltration	on, BMPs is based on the fo	ollowing method: Check the method used.		
	Static	⊠ Simple Dynamic	☐ Dynamic Field¹		
	Runoff from all imp	pervious areas at the site di	scharging to the infiltration BMP.		
	are provided show		not discharging to the infiltration BMP and calculations contributing runoff to the infiltration BMPs is sufficient to		
\boxtimes	Recharge BMPs h	ave been sized to infiltrate	the Required Recharge Volume.		
		ave been sized to infiltrate for the following reason:	the Required Recharge Volume <i>only</i> to the maximum		
	☐ Site is compris	sed solely of C and D soils a	and/or bedrock at the land surface		
	☐ M.G.L. c. 21E	sites pursuant to 310 CMR	40.0000		
	☐ Solid Waste La	andfill pursuant to 310 CMF	R 19.000		
	Project is othe practicable.	rwise subject to Stormwate	r Management Standards only to the maximum extent		
\boxtimes	Calculations showing that the infiltration BMPs will drain in 72 hours are provided.				
	Property includes a	a M.G.L. c. 21E site or a so	lid waste landfill and a mounding analysis is included.		

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 3: Recharge (continued)

- The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- ☐ Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:

	, ,
	is within the Zone II or Interim Wellhead Protection Area
	is near or to other critical areas
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	involves runoff from land uses with higher potential pollutant loads.
П	The Required Water Quality Volume is reduced through use of the LID site Design Credits.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 4: Water Quality (continued) The BMP is sized (and calculations provided) based on: The ½" or 1" Water Quality Volume or The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume. ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs. A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided. Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs) ☐ The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted *prior* to the discharge of stormwater to the post-construction stormwater BMPs. The NPDES Multi-Sector General Permit does *not* cover the land use. LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan. All exposure has been eliminated. All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list. The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent. Standard 6: Critical Areas ☑ The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area. Critical areas and BMPs are identified in the Stormwater Report.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum

ext	ent practicable
	The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
	☐ Limited Project
	 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
	☐ Bike Path and/or Foot Path
	Redevelopment Project
	Redevelopment portion of mix of new and redevelopment.
	Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.
Sta	andard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control
	Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the owing information:
	 Narrative; Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Maintenance Schedule; Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing

the information set forth above has been included in the Stormwater Report.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

	ndard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control ntinued)
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.
	The project is <i>not</i> covered by a NPDES Construction General Permit.
	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
\boxtimes	The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.
Sta	ndard 9: Operation and Maintenance Plan
	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
	Name of the stormwater management system owners;
	□ Party responsible for operation and maintenance;
	Schedule for implementation of routine and non-routine maintenance tasks;
	☑ Plan showing the location of all stormwater BMPs maintenance access areas;
	□ Description and delineation of public safety features;
	☐ Estimated operation and maintenance budget; and
	☐ Operation and Maintenance Log Form.
	The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.
Sta	andard 10: Prohibition of Illicit Discharges
\boxtimes	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
\boxtimes	An Illicit Discharge Compliance Statement is attached;
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of any stormwater to post-construction BMPs.

INTRODUCTION

Coneco Engineers & Scientists, Incorporated (Coneco) has completed a drainage analysis of the subject site, located at 0 Pond Street in Rockland, Massachusetts, the results of which are contained herein. The purpose of this analysis is to quantitatively understand the impacts of the proposed development of the project site on the existing hydrologic conditions and to mitigate said impacts through the implementation of a stormwater management system that utilizes best management practices and is supported by an operations and maintenance plan as well as a long term pollution prevention plan.

DEVELOPMENT SUMMARY

The existing site is mostly wetlands that nearly surround an undeveloped, partially cleared upland area. The proposed project is to construct two new apartment buildings with their associated parking lot, walkways, landscaping, utilities, and stormwater management system. This project is being filed under the Chapter 40B Comprehensive Permit Projects and will follow all Massachusetts Stormwater Management Standards.

STORMWATER MANAGEMENT SYSTEM OVERVIEW

The proposed stormwater management system consists of series of deep sump hooded catch basins, roof leaders, pipes, manholes, proprietary separators, underground infiltration chambers, outlet control structures, and rain gardens to collect, treat, and control the proposed flows that will match or improve the discharge to the sites existing subcatchment design points. This project is located on an undeveloped lot and will be required to fully meet the stormwater standards.

The catch basins will have 4 foot deep sumps and oil/gas hoods. The deep sumps are intended to remove sediment, and the hoods are intended to remove oil and gas from the stormwater prior to release. Stormwater will then travel though a system of pipes and drain manholes. All pipes within the closed conduit system have been designed for a 25-year storm.

Proprietary separators have been provided to facilitate additional in TSS removal for pretreatment by using hydrodynamic separation of particles.

The rain gardens provide water quality treatment and facilitate attenuation of the proposed peak flow rates and volumes below those of the existing conditions at the discharge point for all storm events. The rain gardens on site will be lined to prevent water from infiltrating into the ground. Emergency spillways have been incorporated into rain gardens to facilitate the discharge of stormwater during a high magnitude storm event.

The infiltration chambers provide water quality treatment, recharge, and facilitate attenuation of the proposed peak flow rates and volumes below those of the existing conditions at the discharge point for all storm events. The stormwater from the first flush will be held and will be infiltrated into the ground. Flows from larger storms will be held before eventually discharging to a plunge pool.

The plunge pools have flared end inlets, a depressed center, and a level outer rim. The depressed center promotes the removal of any residual sediment while the level outer rim dissipates the energy of the effluent by diminishing the velocity and eliminating the point discharge.

From an environmentally sensitive perspective, the aforementioned measures will enhance the treatment and control of stormwater while also infiltrating surface water into the ground and preserving the natural hydrologic conditions.

METHODOLOGY

Drainage calculations are performed to demonstrate that there is no increase in the rate of runoff from the subject site due to the proposed project. The rate of runoff is compared at a common point, referred to as the design point, for both the pre and post development condition (or the existing and proposed condition in the case of a redevelopment project). The hydrologic and hydraulic model created to analyze the pre and post development condition was developed using the Soil Conservation Service (SCS) Technical Release No. 20 (TR 20, SCS unit hydrograph procedures), SCS Technical Release No. 55 (TR 55, Time of Concentration (T_c) and Curve Number (CN)), NOAA Atlas 14 (Atlas-14, rainfall intensity) and the stormwater detention facilities were modeled using the SCS Storage Indication Method.

<u>Time of Concentration (T_c)</u> - is the time required for stormwater runoff to travel from the most hydraulically distant point in a drainage area or subcatchment to the design point. The T_c is calculated based upon slope, distance, surface cover and type of flow. A longer time of concentration will generally result in a smaller rate of runoff.

<u>Curve Number (CN)</u> - represents the amount of runoff expected from a particular segment of the drainage area. A higher curve number will be less permeable and therefore a larger rate of runoff. The CN is based upon three factors: soil type, soil cover, and cover condition. The soil type is graded A to D; A soil is the post permeable, D is the least. The soil cover (e.g. - vegetated, developed, farmland or impervious) ranges from 30-98, with more permeable soil covers having a lower value. The final factor is the condition of the vegetated soil cover (good, fair or poor), where vegetated cover in good condition is the most permeable and allows the least runoff.

<u>The Hydrologic Soil Group (HSG)</u> for the drainage areas was determined from the Soil Conservation Service Soil Survey of Plymouth, Massachusetts. The soil survey contains maps which depict the extent of the various soil types. A soil type overlay plan is attached as Figure 6.

<u>Design Software</u> - To assist in the analysis, software entitled HydroCAD, Version 10.0 (developed by HydroCAD Software Solutions, L.L.C.) was utilized. The HydroCAD program calculates the runoff based on rainfall events and watershed characteristics, and produces a runoff hydrograph (a runoff rate versus time curve). If applicable, stage-storage-discharge curves for a specific detention facility are calculated.

<u>Peak Attenuation</u> - The peak rate of runoff at the design points was calculated for the existing and proposed conditions for the 2, 10, 25, and 100-year, 24-hour storm events. The peak rate of runoff was compared for each storm event to determine if there was an increase from the pre to post development condition.

Runoff Volume - The total volume of runoff for the entire site was calculated for the existing and proposed conditions for the 2, 10, 25, and 100-year, 24-hour storm events. The volume of runoff was compared for each storm event to determine if there was an increase from the pre to post development condition.

EXISTING CONDITIONS

Coneco compiled existing and proposed drainage areas from an existing topographic survey. A site visit was conducted to evaluate the existing drainage patterns and watershed areas for the site and the areas surrounding the site. The site is located on the southwest side of Pond Street in Rockland, Massachusetts. The property is mostly wetlands that nearly surround an undeveloped upland area. The upland area is mostly wooded but also has some cleared and brush areas brush. There are access paths that connect the two major upland areas separating the wetland areas. There are existing culverts providing a hydraulic connection between the wetlands beneath the upland access paths. Topography generally slopes from the upland area to the surrounding wetlands. The wetlands generally slope from

the northeast discharging flows along southwestern edge of the property. Grades range from approximately 0.5 to 8 percent.

The Soil Conservation Service map for the area indicates that the site is made of six soil types. Please refer to Table 1 for a summary of these soils.7

<u>Table 1</u>
Existing Soil Classifications

SOIL MAP UNIT	PLYMOUTH COUNTY SOIL SURVEY MAP UNIT NAME AND DESCRIPTION	HYDROLOGIC SOIL GROUP
23A	Tihonet Coarse sand, 0 to 3 percent slopes	A/D
52A	Freetown muck, 0 to 1 percent slopes	B/D
427B	Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony	В
619A	Deerfield-Urban land complex, 0 to 3 percent slopes	А
626B	Merrimac – Urban land complex, 0 to 8 percent slopes	А
655A	Udorthents, wet substratum, 0 to 3 percent slopes	B/D

PROPOSED CONDITIONS

The proposed development consists of the two apartment buildings, a community building, and recreational open space areas. In addition to these new structures, associated access drives, parking areas, walkways, utilities, and drainage systems will be installed throughout the site. These changes increase the overall impervious area found at the site. However, the proposed drainage system has been designed to capture the previously uncontrolled stormwater runoff and direct flows to storage and infiltration facilities, which results in a reduction of the peak rate of runoff. Furthermore, with the addition of the deep sump catch basins with oil/gas hoods, proprietary separators, rain gardens, and an infiltration facility the runoff from the impervious areas will be cleaned appropriately prior to discharge.

STORMWATER MANAGEMENT STANDARDS REVIEW

As part of this drainage analysis, Coneco has performed an in-depth review of the subject site for conformance with the Massachusetts Department of Environmental Protection's Stormwater Management Standards. The project is not considered a redevelopment project (as defined in Standard 7) and is therefore required to meet all of the Massachusetts Stormwater Management Standards. The following is a summary of our findings relative to our review of each of the standards. Please note that the actual text of each standard is italicized for clarity.

STANDARD 1: No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The stormwater shall be treated prior to release with deep sump catch basins with hoods, proprietary separators, rain gardens, and an infiltration facility. The deep sump will provide an area for sediment to settle out and the hood will provide oil and gas separation. The water quality units will provide further treatment using hydrodynamic separation to further remove pollutants before discharging into an infiltration facility. Outlets of the infiltration facilities have been designed to reduce erosion and eliminate scouring within the wetland areas. Rain gardens are designed with a filtering media and will be vegetated to clean stormwater prior to being discharged. A plunge pool shall be installed at each discharge point. The plunge pool will be lined with rip rap and be depressed to form a pool which will enhance sediment removal prior to discharging runoff over a larger area which slows down the velocity and therefore reduces scour.

STANDARD 2: Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

The existing and proposed site conditions were analyzed for the 2, 10, 25, and 100-year 24-hour storm events using the aforementioned methodology (please refer to appendices A and B of this report for HydroCAD output support data). Due to the introduction of stormwater being captured, controlled, attenuated, and infiltrated there is no increase in peak discharge rates or total volume for all storm events analyzed (refer to Table 2), even though there is an increase in the overall impervious area on site.

<u>Table 2</u> <u>Peak Rate of Runoff & Total Volume</u>

Storm Frequency (in years)	Existing (Peak Runoff (CFS)	Conditions Total Volume (CF)	<u>Proposed</u> Peak Runoff (CFS)	Conditions Total Volume (CF)	Percent Deci Peak Runoff	rease From Existing Total Volume (CF)
2	11.54	125,297	10.04	120,105	13.0%	4.1%
10	23.38	249,551	20.30	2 <i>4</i> 2,335	13.2%	2.9%
25	33.24	355,250	28.84	346,204	13.2%	2.5%
100	53.78	580,544	46.53	568,215	13.5%	2.1%

CLOSED DRAINAGE SYSTEM CALCULATIONS

Rational Method – Sizing pipes for the 25-year storm

The Rational Method was used to calculate the peak flow through the pipes, and the Manning equation was used to determine the minimum pipe size required to pass the required flow. The closed drainage system calculations determine the rate of runoff, the time of concentration and the rainfall intensity for the drainage subcatchment. The calculations were performed for a 25-year storm event. The following standards were used:

1. The Rational Formula (Q =CIA) was used to determine the flow to each structure.

Q = Flow cubic feet per second (CFS)

C = Runoff coefficients

I = Rainfall Intensity (inches per hour)

A = Drainage Area (acres)

2. The runoff coefficients used are as follows:

Impervious (pavement and roofs) = 0.85 Landscaped = 0.4

3. The intensity for each area was determined by the Steel Formula for a 25-year frequency storm. The Steel Formula is:

I = k/(t+b)

I = Intensity

k = 230 (25 yr) t = Time of Concentration b = 30 (25 yr)

- 4. The times of concentration were calculated using a spreadsheet which calculates flow time in the pipe with the Manning equation. A minimum time of concentration of six (6) minutes was utilized.
- 5. The Manning's formula was utilized to calculate the capacity of the individual pipes in the closed drainage system. The Manning's formula is:

 $Q = (Ap) (1.486/n) (s^{1/2}) (h^{2/3})$

Q = Flow in CFS

Ap = Cross-sectional area of the pipe (square feet)

n = Roughness coefficient

s = slope of the pipe (ft/ft)

h = hydraulic radius = area/wetted perimeter (sf/ft)

The closed drainage system as designed is capable of handling the design flow as calculated, as well as maintaining a design velocity of between 2.0 feet per second (fps) and 10.0 fps. Two feet per second is considered "self cleansing velocity", and will prevent the pipes from accumulating sediment. Ten feet per second is considered a safe maximum velocity, to reduce scouring of the pipes

STANDARD 3: Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Standard 3 requires that a certain volume of water be recharged to the site depending on existing soil types and square feet of total impervious area over each soil type. Please refer to Table 3 for a summary of the required recharge.

<u>Table 3</u> Recharge to Groundwater

Hydrologic Group	Volume of Recharge (inches/SF)	Total Impervious Area (SF)	Required Recharge Volume (CF)	
A	0.60	2,320	116	
В	0.35	862	25	
С	0.25	N/A	N/A	
D	0.10	196,628	1,639	
	Total Volu	Total Volume to Recharge on Site:		

Therefore, the on-site infiltration system must be designed with a minimum infiltration capacity of 1,780 cubic feet. The proposed design directs 71.4% of the proposed impervious on site to recharge facilities,

resulting in an adjustment factor and increasing the require recharge volume to 2,293 cf. Soils in the proposed area of the infiltration facility are adequate for infiltration, which was confirmed with onsite soil evaluation. Additionally, the bottom of the infiltration facility was placed 4 feet above seasonal high groundwater as determined by the soil evaluation. Please refer to Appendix F for the test pit soil logs. The infiltration facility proposed for the site will provide a total recharge volume of 6,603 cubic feet, which greatly exceeds the required recharge volume. Please refer to Appendix C for this information as well as 72 hour drawdown calculations.

It should be noted that the proposed Infiltration BMPs do not adversely impact nearby wetland resource areas.

Coneco has used the *Simple Dynamic* method for sizing the infiltration BMPs. See Appendix C for calculation.

STANDARD 4: Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This Standard is met when:

- a) Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;
- b) Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
- c) Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

The proposed stormwater management system will achieve the 80% TSS removal requirement for all surface water enters system. Please refer to Table 4 for a TSS removal summary.

Please note that a long term pollution prevention plan has been developed as part of the analysis and can be found in Appendix D.

TREATMENT OF SUSPENDED SOLIDS:

Catch basins will be equipped with hoods and four-foot sumps to limit sediment, oils, and grease from being discharged to the drainage system. The proprietary separators will further reduce total suspended solids (TSS) entering the infiltration facility, achieving 44% TSS removal pretreatment required to achieve the 80% removal rate within the infiltration facility. Please refer to Table 4 – Total Suspended Solids Removal for this information.

Runoff from roofs will be considered clean which require no treatment. All other proposed impervious areas will be collected in the closed drainage system which is routed through a sedimentation forebay and detention basin.

<u>Table 4</u>
<u>Total Suspended Solids Removal</u>

Treatment Train 1(Rain Garden A & B)

BMP	TSS Removal Rate	Starting TSS Load	TSS Removed	Remaining TSS Load
Deep Sump Hooded Catch Basin	0.25	1.00	0.25	0.75
Rain Garden	0.90	0.75	0.675	0.08
		Total Suspended	Solids Removed:	92%

Treatment Train 2 (Infiltration Facility C)

ВМР	TSS Removal Rate	Starting TSS Load	TSS Removed	Remaining TSS Load
Deep Sump Hooded Catch Basin	0.25	1.00	0.25	0.75
Proprietary Separator	0.52	0.75	0.39	0.36
Subsurface Structure (Infiltration Chambers)	0.80	0.36	0.29	0.07
		Total Suspended	Solids Removed:	93%

WATER QUALITY VOLUME

See Appendix C for required water quality volume calculations based on impervious area. The equation is as follows:

Water Quality Volume = Total impervious area of post-development project x 1 inch as required by the Stormwater Standards.

Water Quality Volume = 199,810 s.f. impervious area x 1.0 inches/12 inches per foot = 16,651 cubic feet

The three onsite drainage components provides 22,520 cf of treatment volume, which is in excess of the required 16,651cf.

STANDARD 5: For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The project site is not a land use with higher potential pollutant loads, per the regulation.

STANDARD 6: Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

The project site discharges into an Outstanding Resource Water protection area. Due to these site conditions the proposed discharge is subject to greater stormwater discharge standards. The site is not within or discharge near or to any other critical areas. See Figure 5, Critical Areas.

Due to the project site discharging into an Outstanding Resource Water protection area the use of BMPs are limited to those approved by MassDEP for that protection area. In addition, the Stormwater Standards requires at least 44% TSS pretreatment prior to discharging into an infiltration facility. The primary source of pollution for the site will be the roadway, which is a necessary and integral part of the overall project. The stormwater treatment trains have been designed to meet all DEP stormwater standards.

STANDARD 7: A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The project involves new development of an undeveloped site, and therefore is required to fully meet all the Stormwater Management Standards.

STANDARD 8: A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

A Stormwater Pollution Prevention Plan (SWPPP) will be prepared before the disturbance of any earth commences on the project site. The SWPPP will be prepared by others per EPA NPDES NOI guidelines and submitted under a separate cover.

STANDARD 9: A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

Please refer to Appendix E for the Operation and Maintenance Plan for the proposed Stormwater Management System.

STANDARD 10: All illicit discharges to the stormwater management system are prohibited.

To our knowledge, no illicit discharges are made to the stormwater management system. An Illicit Discharge Compliance Statement is attached in Appendix G of this report.

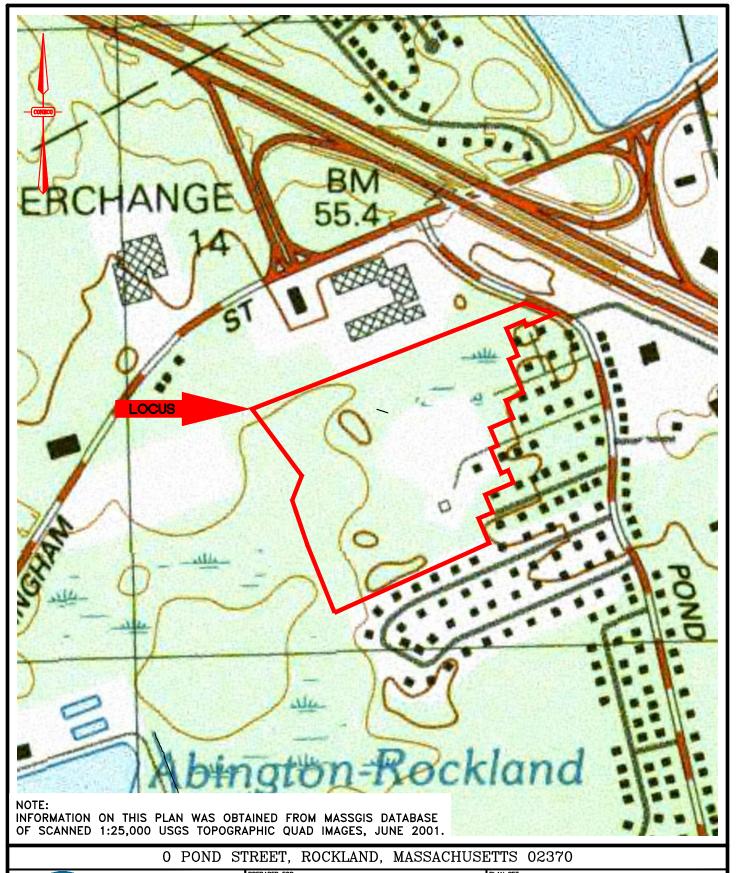
CONCLUSION/SUMMARY:

Based on the HydroCAD analysis for the 2, 10, 25, and 100-year storm events, the peak rate of runoff and the total volume have decreased from the existing to the proposed condition. Furthermore, effluent water quality has been enhanced and infiltration has been introduced to previously uncontrolled areas thereby promoting/preserving the natural hydrologic conditions. In addition to these improvements, all 10 of the DEP Stormwater Standards have been met.

LIST OF FIGURES

- FIGURE 1 AERIAL MAP
- FIGURE 2 USGS TOPOGRAPHIC MAP
- FIGURE 3 FLOOD INSURANCE RATE MAP
- FIGURE 4 NATURAL HERITAGE MAP
- FIGURE 5 CRITICAL AREAS
- FIGURE 6 SOIL SURVEY MAP
- FIGURE 7 EXISTING DRAINAGE AREAS
- FIGURE 8 PROPOSED DRAINAGE AREAS

O POND STREET, ROCKLAND, MASSACHUSETTS 02370


4 FIRST STREET, BRIDGEWATER, MASSACHUSETTS 02324
PHONE 508-697-3191 OR 800-548-3355; FAX 508-697-5996
WEBSITE: www.coneco.com

REPARED FOR:
SHINGLEMILL, LLC

REPORT FIGURES

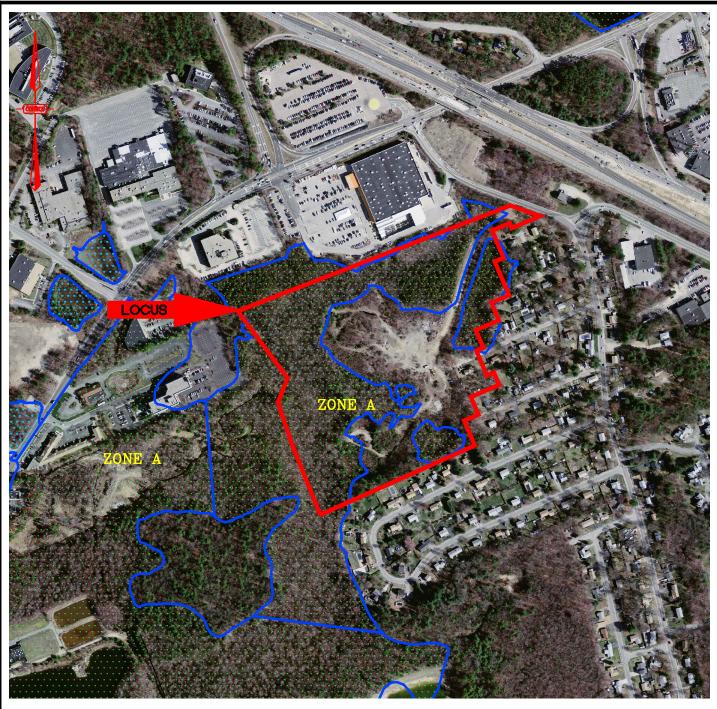
SCALE 1" = 500' DATE 05/14/2020 PROJECT NO. 3395.1

FIGURE 1 AERIAL MAP

ONECO **Engineers & Scientists** 4 FIRST STREET, BRIDGEWATER, MASSACHUSETTS 02324

PHONE 508-697-3191 OR 800-548-3355; FAX 508-697-5996 WEBSITE: www.coneco.com

SHINGLEMILL, LLC


REPORT FIGURES

SCALE 1" = 500'

DATE 05/14/2020

PROJECT NO. 3395.1

FIGURE 2 USGS TOPOGRAPHIC MAP

FLOOD ZONE X, AREAS BETWEEN THE LIMITS OF 100-YEAR AND 500-YEAR FLOODS

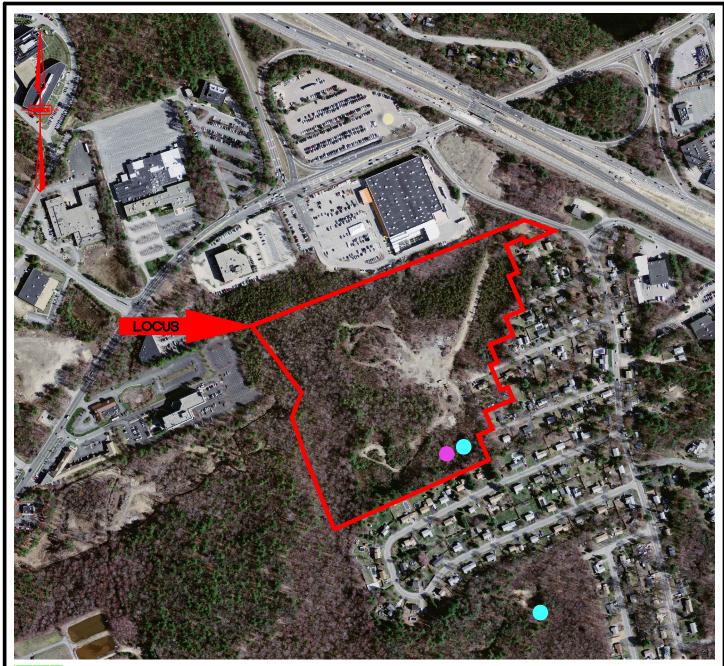
FLOOD ZONE AE, AREAS OF 100-YEAR FLOOD, BASE FLOOD ELEVATIONS DETERMINED

FLOODWAY AREAS IN ZONE AE

FLOOD ZONE A, AREAS OF 100-YEAR FLOOD, BASE FLOOD ELEVATIONS NOT DETERMINED

FLOOD BOUNDARY INFORMATION ON THIS PLAN WAS FOUND ON FEMA FLOOD INSURANCE RATE MAP FOR PLYMOUTH COUNTY COMMUNITY MAP NO. 25023C0092J, EFFECTIVE JULY 17, 2012, ALONG WITH UPDATED PER LETTER OF MAP REVISION 13-01-2134P EFFECTIVE APRIL 14, 2014.

O POND STREET, ROCKLAND, MASSACHUSETTS 02370


4 FIRST STREET, BRIDGEWATER, MASSACHUSETTS 02324
PHONE 508-697-3191 OR 800-548-3355; FAX 508-697-5996
WEBSITE: www.coneco.com

SHINGLEMILL, LLC

REPORT FIGURES

SCALE 1" = 500'

DATE 05/14/2020 PROJECT NO. 3395.1 FIGURE 3 FLOOD INSURANCE RATE MAP

PRIORITY HABITAT OF RARE SPECIES

CERTIFIED VERNAL POOLS

ESTIMATED HABITATS OF RARE WILDLIFE

POTENTIAL VERNAL POOLS

- 1. ESTIMATED HABITATS OF RARE WILDLIFE AND PRIORITY HABITATS OF RARE SPECIES CAME FROM MASSGIS DATABASE LAST UPDATED AUGUST 2017.
- 2. CERTIFIED VERNAL POOL LOCATIONS WERE TAKEN FROM MASSGIS DATABASE ON OCTOBER 4, 2019. THIS DATA IS UPDATED CONTINUALLY AND SHOWN CONDITIONS MAY VARY FROM THIS DATA.
 POTENTIAL VERNAL POOL LOCATIONS WERE TAKEN FROM MASSGIS DATABASE LAST UPDATED DECEMBER 2000.
- THERE ARE NO ESTIMATED HABITATS OF RARE WILDLIFE OR PRIORITY HABITATS OF RARE SPECIES ON THE PROJECT SITE.

O POND STREET, ROCKLAND, MASSACHUSETTS 02370

FIRST STREET, BRIDGEWATER, MASSACHUSETTS 02324 PHONE 508-697-3191 OR 800-548-3355: FAX 508-697-5996 REPARED FOR: SHINGLEMILL, LLC

REPORT FIGURES

SCALE 1" = 500'

DATE 05/14/2020 PROJECT NO. 3395.1

FIGURE 4 NATURAL HERITAGE MAP

AREAS OF CRITICAL ENVIRONMENTAL CONCERN

WELLHEAD PROTECTION AREAS

OUTSTANDING RESOURCE WATERS

SURFACE WATER SUPPLY PROTECTION AREAS

NOTES:

- AREAS OF CRITICAL ENVIRONMENTAL CONCERN WERE TAKEN FROM MASSGIS DATABASE, LAST UPDATED APRIL 2009.
- WELLHEAD PROTECTION AREAS WERE TAKEN FROM MASSGIS DATEBASE, LAST UPDATED APRIL 2019.
- 3. OUTSTANDING RESOURCE WATERS WERE TAKEN FROM MASSGIS DATEBASE, LAST UPDATED MARCH 2010. 4. SURFACE WATER SUPPLY PROTECTION AREAS WERE TAKEN FROM MASSGIS DATEBASE, LAST UPDATED APRIL 2017
- 5. THERE ARE NO AREAS OF CRITICAL ENVIRONMENTAL CONCERN OR WELLHEAD PROTECTION AREAS ON THIS PROJECT SITE.

O POND STREET, ROCKLAND, MASSACHUSETTS 02370

4 FIRST STREET, BRIDGEWATER, MASSACHUSETTS 02324 PHONE 508-697-3191 OR 800-548-3355; FAX 508-697-5996 REPARED FOR:
SHINGLEMILL, LLC

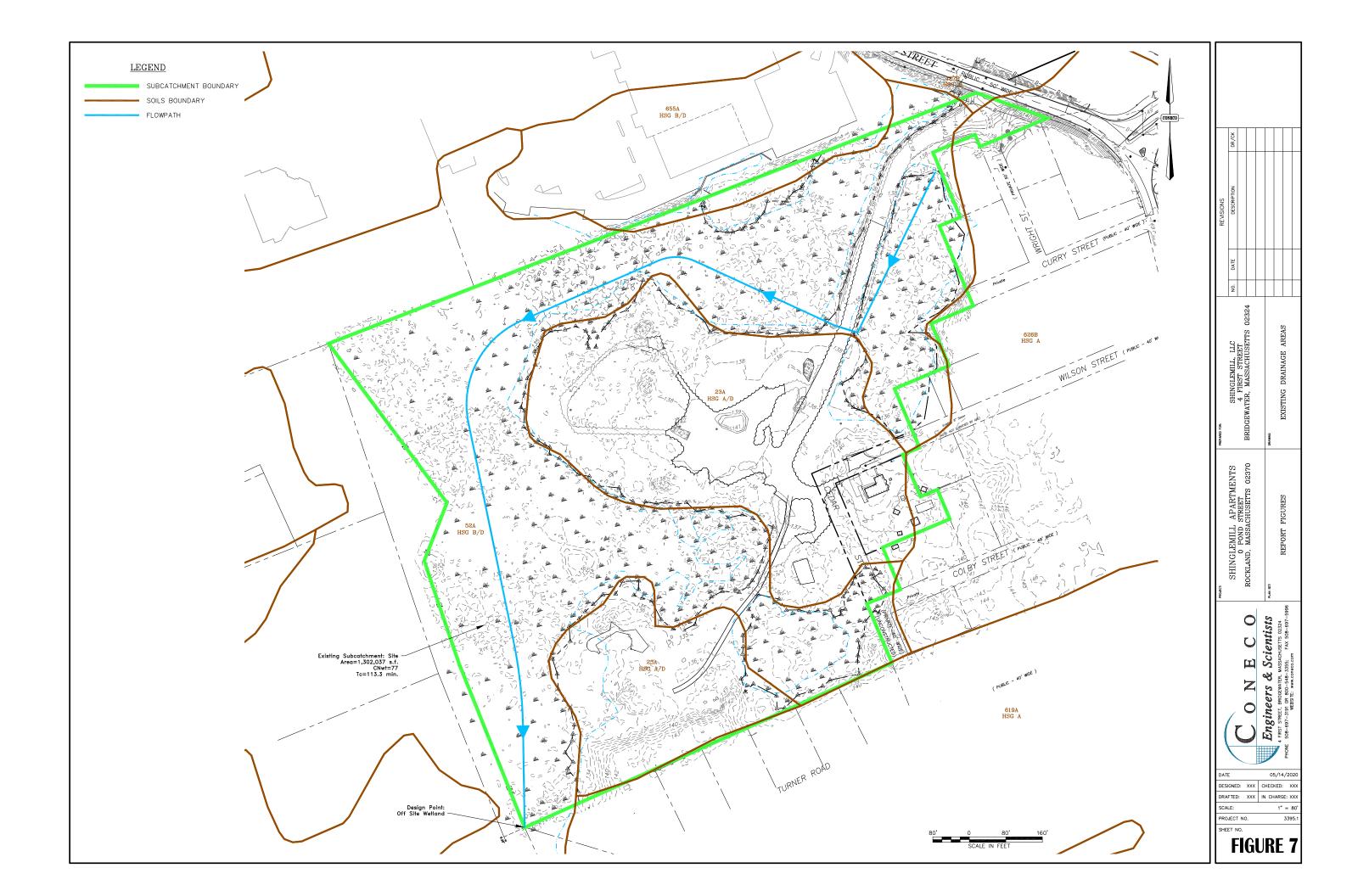
REPORT FIGURES

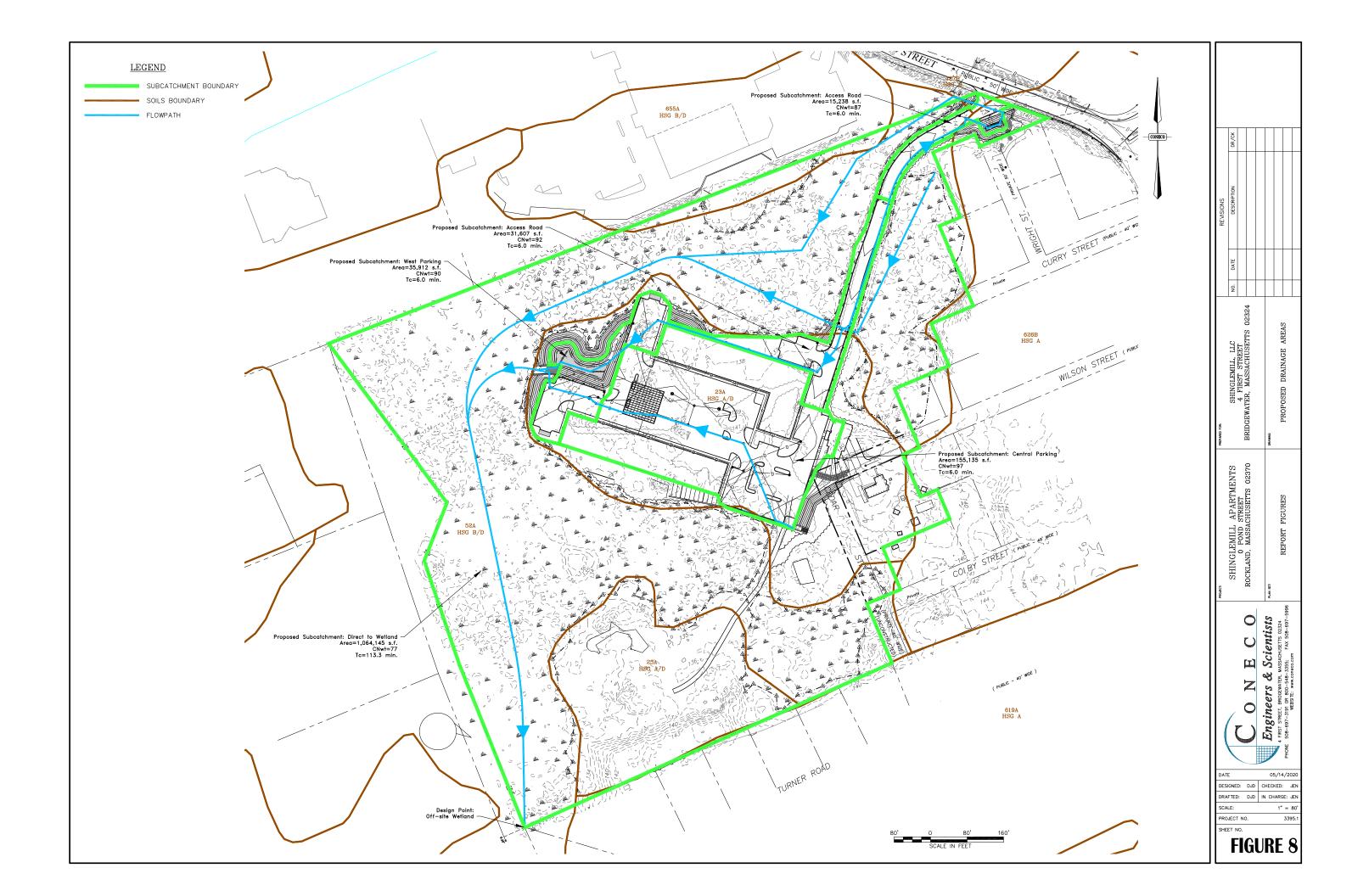
SCALE 1" = 500'

DATE 05/14/2020 PROJECT NO. 3395.1 FIGURE 5 CRITICAL AREAS

NOTE: INFORMATION ON THIS PLAN WAS OBTAINED FROM THE MASSGIS DATABASE, NRCS SSURGO — CERTIFIED SOILS WHICH WAS LAST UPDATED NOVEMBER 2012.

O POND STREET, ROCKLAND, MASSACHUSETTS 02370


4 FIRST STREET, BRIDGEWATER, MASSACHUSETTS 02324
PHONE 508-697-3191 OR 800-548-3355; FAX 508-697-5996
WEBSITE: www.coneco.com

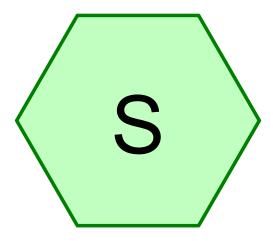

SHINGLEMILL, LLC

REPORT FIGURES

SCALE 1" = 500' DATE 05/14/2020

PROJECT NO. 3395.1 FIGURE 6 SOIL SURVEY MAP

APPENDIX A


EXISTING HYDROLOGICAL CONDITIONS

2-YEAR STORM EVENT

10-YEAR STORM EVENT

25-YEAR STORM EVENT

100-YEAR STORM EVENT

Site

Printed 5/14/2020 Page 2

Area Listing (selected nodes)

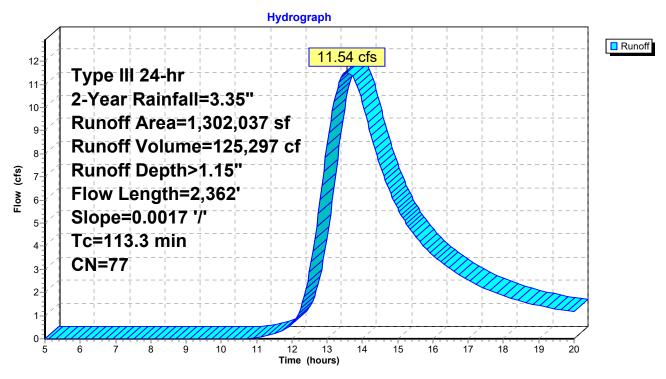
Area	CN	Description
(sq-ft)		(subcatchment-numbers)
6,761	30	Brush, Good, HSG A (S)
1,173	48	Brush, Good, HSG B (S)
32,809	73	Brush, Good, HSG D (S)
74,635	89	Dirt roads, HSG D (S)
1,363	91	Gravel roads, HSG D (S)
192	98	Paved roads w/curbs & sewers, HSG A (S)
5,469	98	Paved roads w/curbs & sewers, HSG D (S)
173	78	Wetland, HSG A (S)
720,013	78	Wetlands, HSG D (S)
14,765	30	Woods, Good, HSG A (S)
501	55	Woods, Good, HSG B (S)
444,183	77	Woods, Good, HSG D (S)
1,302,037	77	TOTAL AREA

Prepared by Microsoft
HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment S: Site

Runoff = 11.54 cfs @ 13.55 hrs, Volume= 125,297 cf, Depth> 1.15"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.35"

	Area (sf) CN Description								
	14,765 30 Woods, Good, HSG A								
		6,761		Brush, Good, HSG A					
* 173			78 V	Wetland, HSG A					
		192		Paved roads w/curbs & sewers, HSG A					
	501 55 Woods, Good, HSC								
	1,173 48 Brush, Good, HSG								
	444,183 77 Woods, Good, HSG D								
	32,809 73 Brush, Good, HSG D								
	74,635 89 Dirt roads, HSG D								
	1,363 91 Gravel roads, HSG D								
	* 720,013 78 Wetlands, HSG D					Leaver LICC D			
_	5,469 98 Paved roads w/curbs & sewers, HSG D								
	1,302,037 77 Weighted Average 1,296,376 99,57% Pervious Area								
	1,296,376		-		*** *** * * * * * * * * * * * * * * * *				
	5,661 0.43% Impervious Area					d .			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description			
_	56.3	50	0.0017	0.01	(0.0)	Sheet Flow, AB			
	00.0	00	0.0017	0.01		Woods: Dense underbrush n= 0.800 P2= 3.35"			
	8.6	341	0.0017	0.66		Shallow Concentrated Flow, BC			
	0.0	• • • • • • • • • • • • • • • • • • • •		0.00		Unpaved Kv= 16.1 fps			
	0.2	51	0.0017	3.51	11.02				
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
						n= 0.011 Concrete pipe, straight & clean			
	48.2	1,920	0.0017	0.66		Shallow Concentrated Flow, DE			
						Unpaved Kv= 16.1 fps			
	113.3	2,362	Total						

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 4

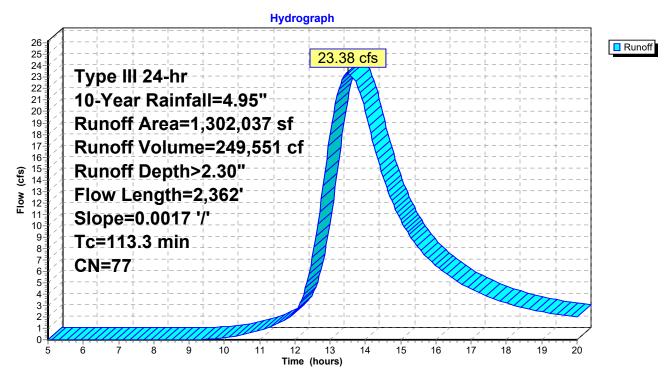
Subcatchment S: Site

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment S: Site

Runoff = 23.38 cfs @ 13.50 hrs, Volume= 249,551 cf, Depth> 2.30"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.95"

A	rea (sf)	CN D	escription						
	14,765	30 V	Voods, Go						
	6,761		Brush, Good, HSG A						
*	173		Wetland, HSG A						
	192		Paved roads w/curbs & sewers, HSG A						
	501		/oods, Good, HSG B						
1,173 48 Brush, Good, H									
	44,183		Woods, Good, HSG D						
	32,809		Brush, Good, HSG D						
	74,635		Dirt roads, HSG D						
* 7	1,363 91 Gravel roads, HSG D								
<i>"</i> /	720,013 76 Wellands, H3G D				Laguera LICC D				
	5,469 98 Paved roads w/curbs & sewers, HSG D								
	02,037		Veighted A	•					
1,2	1,296,376			vious Area	_				
	5,661 0.43% Impervious Area			i vious Area	1				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Becompact				
56.3	50	0.0017	0.01	(0.0)	Sheet Flow, AB				
00.0	00	0.0017	0.01		Woods: Dense underbrush n= 0.800 P2= 3.35"				
8.6	341	0.0017	0.66		Shallow Concentrated Flow, BC				
0.0	0	0.0011	0.00		Unpaved Kv= 16.1 fps				
0.2	51	0.0017	3.51	11.02					
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
					n= 0.011 Concrete pipe, straight & clean				
48.2	1,920	0.0017	0.66		Shallow Concentrated Flow, DE				
					Unpaved Kv= 16.1 fps				
113.3	2,362	Total							

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 6

Subcatchment S: Site

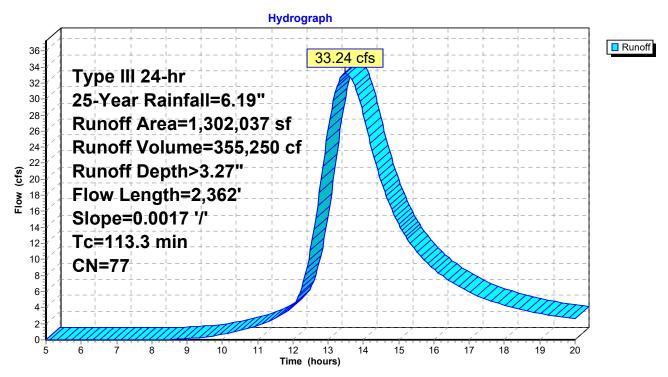
3395.1 - 0 Pond Street - Existing Condition

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment S: Site


Runoff = 33.24 cfs @ 13.48 hrs, Volume= 355,250 cf, Depth> 3.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.19"

A	rea (sf)	CN E	escription					
	14,765	30 V	Voods, Go	od, HSG A				
	6,761		Brush, Good, HSG A					
*	173		Wetland, HSG A					
	192		Paved roads w/curbs & sewers, HSG A					
	501			od, HSG B				
	1,173		Brush, Goo					
	44,183			od, HSG D				
	32,809 73 Brush, Good, HSG D							
	74,635 89 Dirt roads, HSG D							
* 7	1,363		Gravel road					
/	120,013 10 Wellands, 1130 D				Laguera HSC D			
1.2	5,469				A SEWEIS, FISO D			
	02,037		Veighted A	•				
1,2	1,296,376 5,661		99.57% Pervious Area 0.43% Impervious Area					
	3,001	U	.40 /0 IIIIpe	i vious Aiec	a			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
56.3	50	0.0017	0.01	, ,	Sheet Flow, AB			
		0.00	0.0.		Woods: Dense underbrush n= 0.800 P2= 3.35"			
8.6	341	0.0017	0.66		Shallow Concentrated Flow, BC			
					Unpaved Kv= 16.1 fps			
0.2	51	0.0017	3.51	11.02	Pipe Channel, CD			
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
					n= 0.011 Concrete pipe, straight & clean			
48.2	1,920	0.0017	0.66		Shallow Concentrated Flow, DE			
					Unpaved Kv= 16.1 fps			
113.3	2,362	Total						

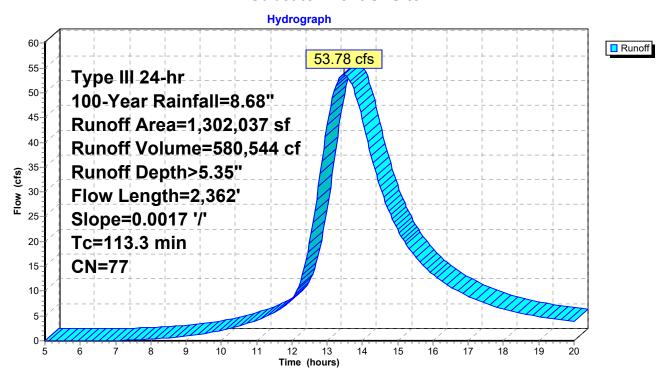
Page 8

Subcatchment S: Site

Page 9

Summary for Subcatchment S: Site

Runoff = 53.78 cfs @ 13.47 hrs, Volume= 580,544 cf, Depth> 5.35"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.68"

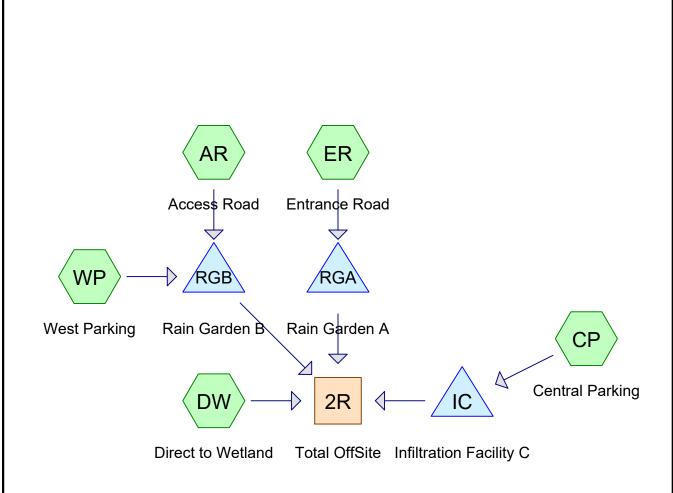
	Α	rea (sf)	CN E	Description				
		14,765	30 V	30 Woods, Good, HSG A				
		6,761	30 E	Brush, Goo	d, HSG A			
*		173	78 V	Vetland, H	SG A			
		192	98 F	Paved road	s w/curbs &	k sewers, HSG A		
		501			od, HSG B			
		1,173		Brush, Goo				
		44,183			od, HSG D			
		32,809		Brush, Goo				
		74,635)irt roads, l				
	_	1,363		Gravel road	•			
*	7	20,013		Vetlands, F				
_		5,469				k sewers, HSG D		
	1,302,037 77 Weighted Average			•	•			
	1,2	96,376	-		vious Area			
		5,661	Ü	0.43% Impe	ervious Area	a		
	т.	1 41-	Class a	\	0	Description		
	Tc	Length	Slope	Velocity		Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	OL 451 AB		
	56.3	50	0.0017	0.01		Sheet Flow, AB		
	0.0	044	0.0047	0.00		Woods: Dense underbrush n= 0.800 P2= 3.35"		
	8.6	341	0.0017	0.66		Shallow Concentrated Flow, BC		
	0.2	51	0.0017	3.51	11.00	Unpaved Kv= 16.1 fps		
	0.2	31	0.0017	3.31	11.02	Pipe Channel, CD 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'		
						n= 0.011 Concrete pipe, straight & clean		
	48.2	1,920	0.0017	0.66		Shallow Concentrated Flow, DE		
	1 0.∠	1,020	0.0017	0.00		Unpaved Kv= 16.1 fps		
_	113.3	2,362	Total			Onparoa IXI IO.I Ipo		

Prepared by Microsoft HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 10

Subcatchment S: Site

APPENDIX B


PROPOSED HYDROLOGICAL CONDITIONS

2-YEAR STORM EVENT

10-YEAR STORM EVENT

25-YEAR STORM EVENT

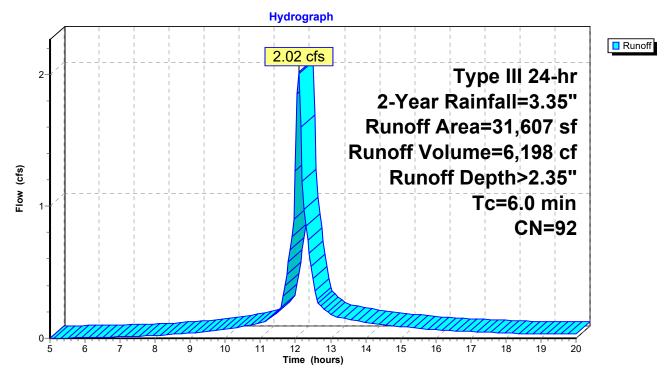
100-YEAR STORM EVENT

Printed 5/14/2020 Page 2

Area Listing (selected nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
2,144	39	>75% Grass cover, Good, HSG A (ER)
611	61	>75% Grass cover, Good, HSG B (DW, ER)
99,504	80	>75% Grass cover, Good, HSG D (AR, CP, DW, ER, WP)
3,586	30	Brush, Good, HSG A (DW)
13,695	89	Dirt roads, HSG D (DW)
1,529	91	Gravel roads, HSG D (CP, DW)
2,050	98	Paved parking, HSG A (ER)
104,270	98	Paved parking, HSG D (CP, WP)
270	98	Paved roads w/curbs & sewers, HSG A (DW)
862	98	Paved roads w/curbs & sewers, HSG B (ER)
32,621	98	Paved roads w/curbs & sewers, HSG D (AR, DW, ER)
58,190	98	Roofs, HSG D (CP)
1,547	98	Unconnected roofs, HSG D (DW)
173	78	Wetland, HSG A (DW)
720,013	78	Wetlands, HSG D (DW)
13,667	30	Woods, Good, HSG A (DW)
200	55	Woods, Good, HSG B (DW)
247,105	77	Woods, Good, HSG D (DW)
1,302,037	80	TOTAL AREA

Page 3


Summary for Subcatchment AR: Access Road

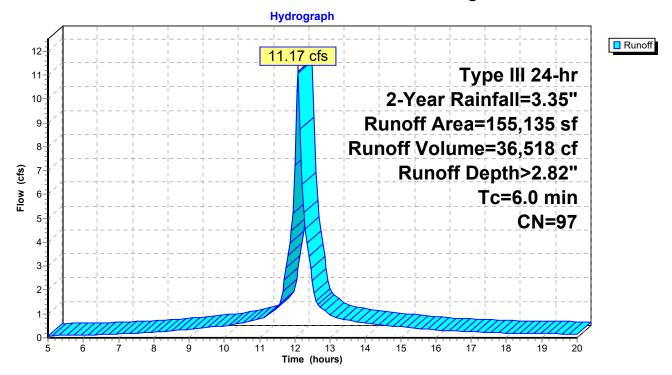
Runoff = 2.02 cfs @ 12.09 hrs, Volume= 6,198 cf, Depth> 2.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.35"

	Area (sf)	CN	Description					
	9,745	80	>75% Gras	s cover, Go	ood, HSG D			
	21,862	98	Paved road	s w/curbs 8	& sewers, HSG D			
	31,607	92	2 Weighted Average					
	9,745 30.83% Pervious Area				a			
	21,862		69.17% Impervious Area					
т.	. Longth	Clana	\/alaaitu	Consoitu	Description			
T(9	Slope	,	Capacity	Description			
<u>(min</u>) (feet)	(ft/ft) (ft/sec)	(cfs)				
6.0)				Direct Entry, AB			

Subcatchment AR: Access Road

Page 4


Summary for Subcatchment CP: Central Parking

Runoff = 11.17 cfs @ 12.09 hrs, Volume= 36,518 cf, Depth> 2.82"

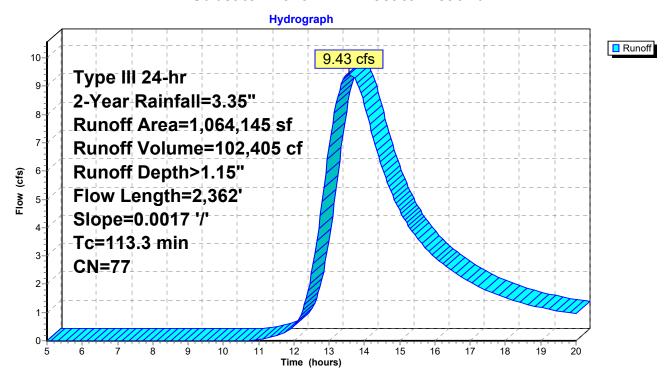
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.35"

Area	a (sf)	CN	Description				
	95	91	Gravel road	s, HSG D			
12	2,396	80	>75% Grass	s cover, Go	od, HSG D		
58	3,190	98	Roofs, HSG	D			
84	1,454	98	Paved parki	ng, HSG D)		
155	5,135	97	Weighted Average				
12	2,491		8.05% Pervious Area				
142	2,644	91.95% Impervious Area					
Tc L	ength.	Slope		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Subcatchment CP: Central Parking

Page 5

Summary for Subcatchment DW: Direct to Wetland


Runoff = 9.43 cfs @ 13.55 hrs, Volume= 102,405 cf, Depth> 1.15"

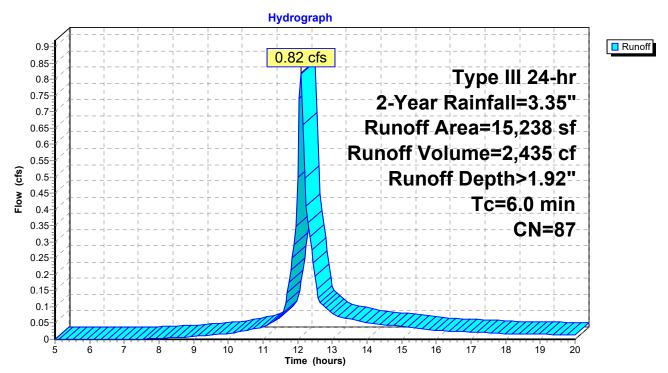
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.35"

	Α	rea (sf)	CN E	escription		
		13,667	30 V	Voods, Go	od, HSG A	
		3,586	30 E	rush, Goo	d, HSG A	
*		173	78 V	Vetland, H	SG A	
		270	98 F	aved road	s w/curbs &	& sewers, HSG A
		200	55 V	Voods, Go	od, HSG B	
		596	61 >	75% Gras	s cover, Go	ood, HSG B
	2	47,105		,	od, HSG D	
		13,695)irt roads, I		
		1,434		Gravel road	•	
		59,032				ood, HSG D
*	7	20,013		Vetlands, F		
		1,547			ed roofs, H	
		2,827		Paved road	s w/curbs 8	R sewers, HSG D
		64,145		Veighted A	•	
	1,0	59,501	_		vious Area	
		4,644			ervious Are	a
		1,547	3	3.31% Un	connected	
	т.	1 41-	01	\/-1:4	0	Description
,	Tc	Length	Slope	Velocity	Capacity	Description
	<u>min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	OL (EL AD
	56.3	50	0.0017	0.01		Sheet Flow, AB
	0.6	244	0.0047	0.66		Woods: Dense underbrush n= 0.800 P2= 3.35"
	8.6	341	0.0017	0.66		Shallow Concentrated Flow, BC
	0.0	E4	0.0047	2.54	44.00	Unpaved Kv= 16.1 fps
	0.2	51	0.0017	3.51	11.02	Pipe Channel, CD 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
	48.2	1 020	0.0017	0.66		n= 0.011 Concrete pipe, straight & clean Shallow Concentrated Flow, DE
	40.2	1,920	0.0017	0.00		Unpaved Kv= 16.1 fps
	12.2	2 262	Total			Olipaved IXV- 10.1 lps
ı	13.3	2,362	Total			

Page 6

Subcatchment DW: Direct to Wetland

Page 7


Summary for Subcatchment ER: Entrance Road

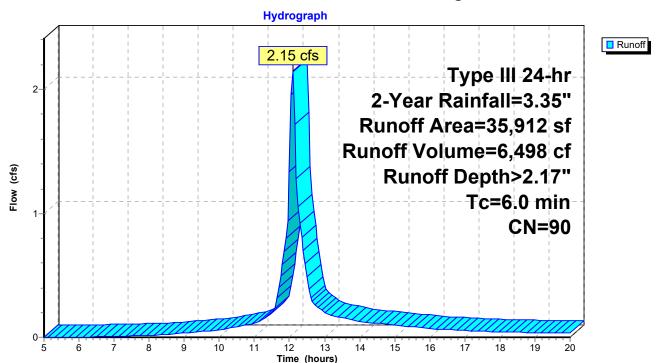
Runoff = 0.82 cfs @ 12.09 hrs, Volume= 2,435 cf, Depth> 1.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.35"

Area (s	sf) CN	N Description					
2,14	44 39	>75% Grass	s cover, Go	lood, HSG A			
2,0	50 98	Paved park	ng, HSG A	A			
•	15 61	>75% Gras	s cover, Go	lood, HSG B			
86	62 98	Paved road	s w/curbs &	& sewers, HSG B			
2,23	35 80	>75% Gras	s cover, Go	lood, HSG D			
7,93	32 98	98 Paved roads w/curbs & sewers, HSG D					
15,23	38 87	87 Weighted Average					
4,39	94	28.84% Per	vious Area	a			
10,84	44	71.16% Imp	ervious Are	rea			
Tc Len	gth Slo	pe Velocity	Capacity	Description			
<u>(min)</u> (fe	eet) (ft.	/ft) (ft/sec)	(cfs)				
6.0				Direct Entry, AB			

Subcatchment ER: Entrance Road

Page 8


Summary for Subcatchment WP: West Parking

Runoff = 2.15 cfs @ 12.09 hrs, Volume= 6,498 cf, Depth> 2.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.35"

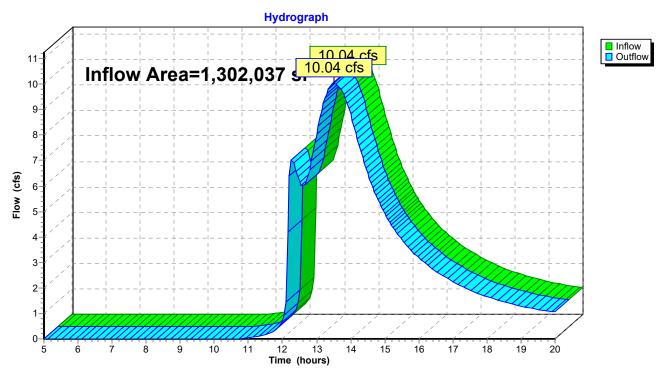
	Area (sf)	CN	Description				
	16,096	80	>75% Gras	s cover, Go	Good, HSG D		
	19,816	98	Paved park	ing, HSG D	D		
	35,912	90	Weighted Average				
	16,096		44.82% Pervious Area				
	19,816		55.18% Impervious Area				
To	Length	Slope	e Velocity	Capacity	Description		
(min)	-	(ft/ft	,	(cfs)	•		
6.0		(1010	(14000)	(0.0)	Direct Entry,		
0.0					Direct Lift,		

Subcatchment WP: West Parking

Prepared by Microsoft HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 9

Summary for Reach 2R: Total OffSite


Inflow Area = 1,302,037 sf, 15.35% Impervious, Inflow Depth > 1.11" for 2-Year event

Inflow = 10.04 cfs @ 13.51 hrs, Volume= 120,105 cf

Outflow = 10.04 cfs @ 13.51 hrs, Volume= 120,105 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: Total OffSite

Prepared by Microsoft

Type III 24-hr 2-Year Rainfall=3.35" Printed 5/14/2020

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 10

Summary for Pond IC: Infiltration Facility C

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 141.32' @ 12.25 hrs Surf.Area= 5,439 sf Storage= 9,162 cf

Plug-Flow detention time= 40.2 min calculated for 36,503 cf (100% of inflow) Center-of-Mass det. time= 39.9 min (782.9 - 743.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	139.00'	4,509 cf	74.00'W x 73.50'L x 3.54'H Field A
			19,263 cf Overall - 7,991 cf Embedded = 11,272 cf x 40.0% Voids
#2A	139.50'	7,991 cf	Cultec R-330XLHD x 150 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 15 rows
	·	40.500.5	T () A () 1 0

12,500 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	140.70'	24.0" Round Culvert X 2.00
	•		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 139.50' / 140.70' S= -0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Discarded	139.00'	8.270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=1.04 cfs @ 11.35 hrs HW=139.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.04 cfs)

Primary OutFlow Max=4.36 cfs @ 12.25 hrs HW=141.31' (Free Discharge)
—1=Culvert (Inlet Controls 4.36 cfs @ 2.67 fps)

Page 11

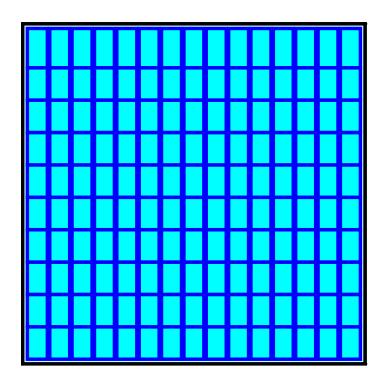
Pond IC: Infiltration Facility C - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 15 rows

52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +12.0" End Stone x 2 = 73.50' Base Length

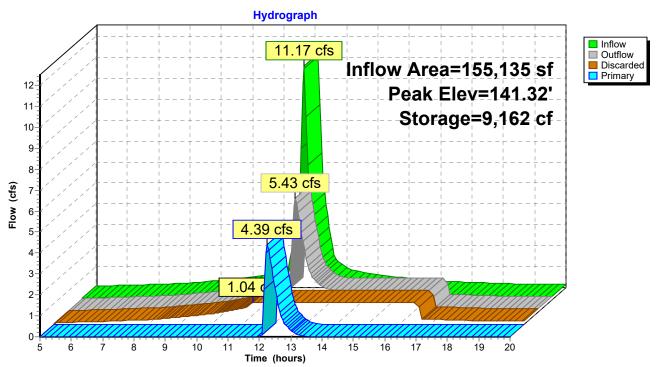

15 Rows x 52.0" Wide + 6.0" Spacing x 14 + 12.0" Side Stone x 2 = 74.00' Base Width 6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

150 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 15 Rows = 7,991.2 cf Chamber Storage

19,263.1 cf Field - 7,991.2 cf Chambers = 11,271.9 cf Stone x 40.0% Voids = 4,508.8 cf Stone Storage

Chamber Storage + Stone Storage = 12,500.0 cf = 0.287 af Overall Storage Efficiency = 64.9% Overall System Size = 73.50' x 74.00' x 3.54'

150 Chambers 713.4 cy Field 417.5 cy Stone



Prepared by Microsoft
HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 12

Pond IC: Infiltration Facility C

Type III 24-hr 2-Year Rainfall=3.35" Printed 5/14/2020

Prepared by Microsoft
HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 13

Summary for Pond RGA: Rain Garden A

Inflow Area = 15,238 sf, 71.16% Impervious, Inflow Depth > 1.92" for 2-Year event

Inflow = 0.82 cfs @ 12.09 hrs, Volume= 2,435 cf

Outflow = 0.49 cfs @ 12.22 hrs, Volume= 1,615 cf, Atten= 41%, Lag= 7.7 min

Primary = 0.49 cfs @ 12.22 hrs, Volume= 1,615 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 141.33' @ 12.22 hrs Surf.Area= 1,073 sf Storage= 985 cf

Plug-Flow detention time= 126.0 min calculated for 1,615 cf (66% of inflow)

Center-of-Mass det. time= 56.1 min (839.2 - 783.0)

Volume	Invert	Avail.Storage	Storage Description
#1	139.60'	2,110 cf	ABOVE STORAGE (Prismatic)Listed below (Recalc)
#2	136.60'	79 cf	MEDIA (Prismatic)Listed below (Recalc)
			786 cf Overall x 10.0% Voids

2,189 cf Total Available Storage

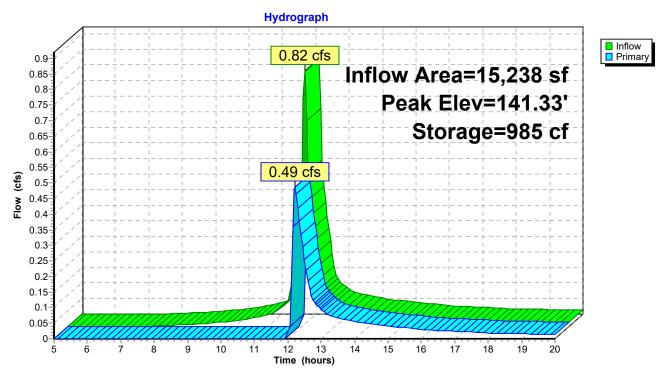
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
139.60	261	0	0
140.00	372	127	127
141.00	687	530	656
142.00	1,059	873	1,529
142.50	1,266	581	2,110
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
136.60	262	0	0
139.60	262	786	786

Device	Routing	Invert	Outlet Devices
#1	Primary	135.93'	12.0" Round Culvert
			L= 17.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 135.93' / 135.63' S= 0.0176 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	141.10'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 0.30
			Width (feet) 1.00 2.00
#3	Device 1	141.40'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	141.50'	12.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=0.47 cfs @ 12.22 hrs HW=141.33' (Free Discharge)

1=Culvert (Passes 0.47 cfs of 8.37 cfs potential flow)

2=Custom Weir/Orifice (Weir Controls 0.47 cfs @ 1.48 fps)


-3=Orifice/Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Microsoft
HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 14

Pond RGA: Rain Garden A

Type III 24-hr 2-Year Rainfall=3.35" Printed 5/14/2020

Prepared by Microsoft
HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 15

Summary for Pond RGB: Rain Garden B

Inflow Area = 67,519 sf, 61.73% Impervious, Inflow Depth > 2.26" for 2-Year event

Inflow = 4.17 cfs @ 12.09 hrs, Volume= 12,697 cf

Outflow = 1.25 cfs @ 12.42 hrs, Volume= 9,493 cf, Atten= 70%, Lag= 20.1 min

Primary = 1.25 cfs @ 12.42 hrs, Volume= 9,493 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 140.29' @ 12.42 hrs Surf.Area= 6,490 sf Storage= 6,304 cf

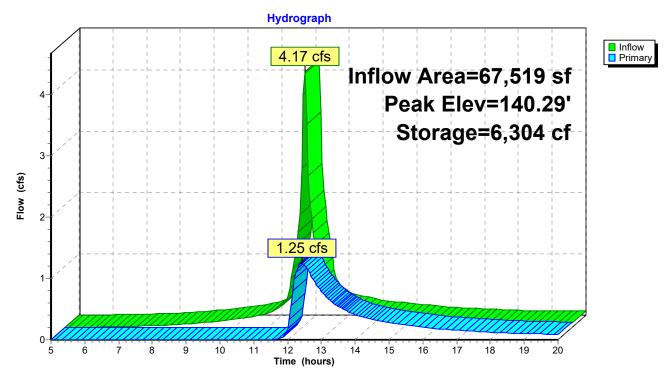
Plug-Flow detention time= 146.8 min calculated for 9,493 cf (75% of inflow)

Center-of-Mass det. time= 86.0 min (855.3 - 769.3)

Volume	Invert	Avail.Storage	Storage Description
#1	138.50'	16,696 cf	ABOVE STORAGE (Prismatic)Listed below (Recalc)
#2	136.00'	586 cf	MEDIA (Prismatic)Listed below (Recalc)
			5,863 cf Overall x 10.0% Voids

17,282 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
138.50	2,345	0	0	
139.00	2,792	1,284	1,284	
140.00	3,753	3,273	4,557	
141.00	5,086	4,420	8,976	
142.00	6,481	5,784	14,760	
142.25	9,009	1,936	16,696	
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
136.00	2,345	0	0	
138.50	2.345	5.863	5.863	


<u>Device</u>	Routing	Invert	Outlet Devices
#1	Primary	139.00'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 2.00 2.00 3.00
			Width (feet) 0.00 1.00 5.00 5.00

Primary OutFlow Max=1.24 cfs @ 12.42 hrs HW=140.29' (Free Discharge)
1=Custom Weir/Orifice (Weir Controls 1.24 cfs @ 2.98 fps)

Prepared by Microsoft
HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 16

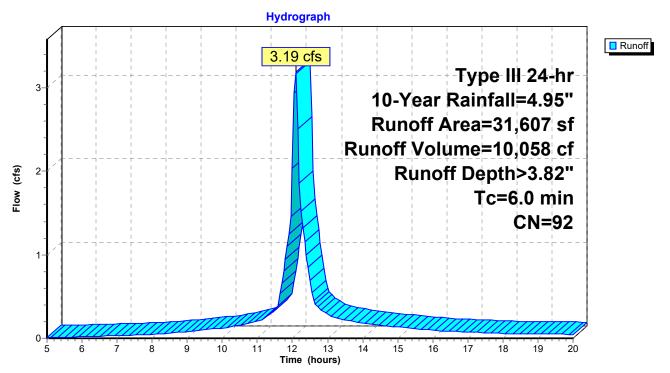
Pond RGB: Rain Garden B

Page 17

3395.1 - 0 Pond Street - Proposed Condition

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC


Summary for Subcatchment AR: Access Road

Runoff = 3.19 cfs @ 12.09 hrs, Volume= 10,058 cf, Depth> 3.82"

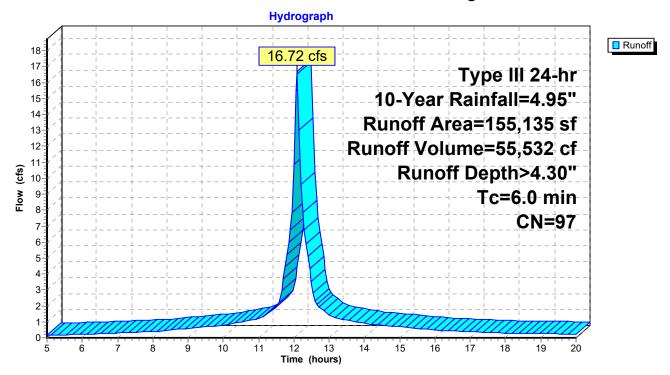
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.95"

	Area (sf)	CN	Description				
	9,745	80	>75% Gras	s cover, Go	ood, HSG D		
	21,862	98	Paved road	s w/curbs 8	& sewers, HSG D		
	31,607	92	Weighted Average				
	9,745		30.83% Pervious Area				
	21,862		69.17% Impervious Area				
т.	. Longth	Clana	\/alaaitu	Consoitu	Description		
T(9	Slope	,	Capacity	Description		
<u>(min</u>) (feet)	(ft/ft) (ft/sec)	(cfs)			
6.0)				Direct Entry, AB		

Subcatchment AR: Access Road

Page 18

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC


Summary for Subcatchment CP: Central Parking

Runoff = 16.72 cfs @ 12.09 hrs, Volume= 55,532 cf, Depth> 4.30"

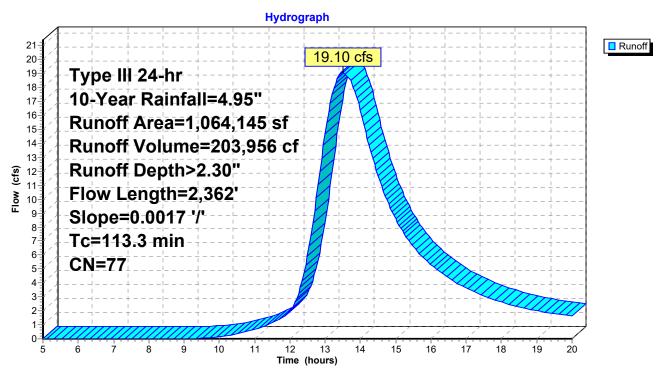
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.95"

Area	a (sf)	CN	Description				
	95	91	Gravel road	s, HSG D			
12	2,396	80	>75% Grass	s cover, Go	od, HSG D		
58	3,190	98	Roofs, HSG	D			
84	1,454	98	Paved parking, HSG D				
155	5,135	97	Weighted A	verage			
12	2,491		8.05% Pervious Area				
142	2,644		91.95% Impervious Area				
Tc L	ength.	Slope		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Subcatchment CP: Central Parking

Page 19

Summary for Subcatchment DW: Direct to Wetland


Runoff = 19.10 cfs @ 13.50 hrs, Volume= 203,956 cf, Depth> 2.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.95"

	Α	rea (sf)	CN E	Description		
		13,667	30 V	Voods, Go	od, HSG A	
		3,586	30 E	Brush, Goo	d, HSG A	
*		173	78 V	Vetland, H	SG A	
		270	98 F	Paved road	s w/curbs &	& sewers, HSG A
		200	55 V	Voods, Go	od, HSG B	
		596	61 >	75% Gras	s cover, Go	ood, HSG B
	2	47,105	77 V	Voods, Go	od, HSG D	
		13,695)irt roads, I		
		1,434	91 (Gravel road	s, HSG D	
		59,032			•	ood, HSG D
*	7	20,013		Vetlands, F		
		1,547			ed roofs, H	
_		2,827				& sewers, HSG D
		64,145		Veighted A	•	
	1,0	59,501	_		vious Area	
		4,644			ervious Are	a
		1,547	3	3.31% Un	connected	
	_	1 41.	01	V/-1!6	0	Describetion
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	01 (51 AD
	56.3	50	0.0017	0.01		Sheet Flow, AB
	0.6	244	0.0047	0.66		Woods: Dense underbrush n= 0.800 P2= 3.35"
	8.6	341	0.0017	0.66		Shallow Concentrated Flow, BC
	0.2	E 1	0.0017	2.51	11.00	Unpaved Kv= 16.1 fps
	0.2	51	0.0017	3.51	11.02	Pipe Channel, CD 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
	48.2	1,920	0.0017	0.66		n= 0.011 Concrete pipe, straight & clean Shallow Concentrated Flow, DE
	40.2	1,920	0.0017	0.00		Unpaved Kv= 16.1 fps
_	113.3	2 362	Total			στιράνου ττν- το.τ τρο
	113.3	2,362	ı Ulai			

Page 20

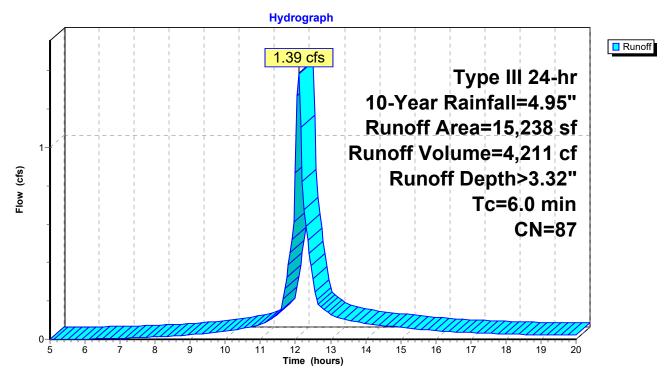
Subcatchment DW: Direct to Wetland

Page 21

3395.1 - 0 Pond Street - Proposed Condition

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC


Summary for Subcatchment ER: Entrance Road

Runoff = 1.39 cfs @ 12.09 hrs, Volume= 4,211 cf, Depth> 3.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.95"

Are	ea (sf)	CN	Description			
	2,144	39	>75% Grass	s cover, Go	od, HSG A	
	2,050	98	Paved park	ng, HSG A		
	15	61	>75% Grass	s cover, Go	od, HSG B	
	862	98	Paved road	s w/curbs &	sewers, HSG B	
	2,235	80	>75% Grass	s cover, Go	od, HSG D	
	7,932	98	Paved road	s w/curbs &	sewers, HSG D	
1	5,238	87	Weighted A	verage		
	4,394		28.84% Per	vious Area		
1	0,844		71.16% Imp	ervious Are	ea	
Тс	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry, AB	

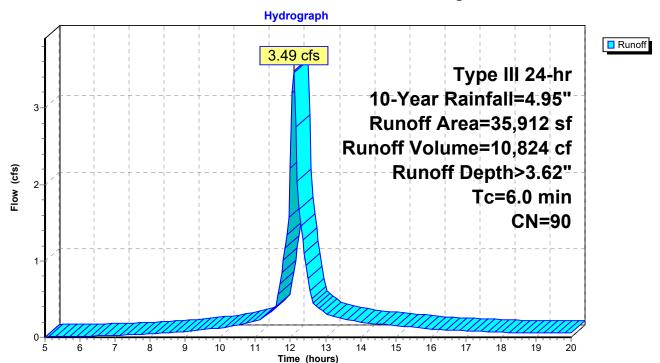
Subcatchment ER: Entrance Road

Page 22

3395.1 - 0 Pond Street - Proposed Condition

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC


Summary for Subcatchment WP: West Parking

Runoff = 3.49 cfs @ 12.09 hrs, Volume= 10,824 cf, Depth> 3.62"

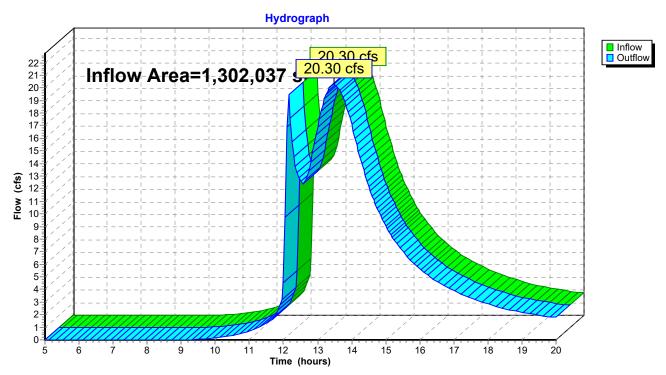
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.95"

A	rea (sf)	CN	Description				
	16,096	80	>75% Grass	s cover, Go	ood, HSG D		
	19,816	98	Paved park	ing, HSG D	D		
	35,912	90	Weighted Average				
	16,096		44.82% Pervious Area				
	19,816		55.18% Impervious Area				
Tc	Length	Slope	,	Capacity	•		
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Subcatchment WP: West Parking

Page 23

Summary for Reach 2R: Total OffSite


Inflow Area = 1,302,037 sf, 15.35% Impervious, Inflow Depth > 2.23" for 10-Year event

Inflow = 20.30 cfs @ 13.47 hrs, Volume= 242,335 cf

Outflow = 20.30 cfs @ 13.47 hrs, Volume= 242,335 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: Total OffSite

Prepared by Microsoft

Type III 24-hr 10-Year Rainfall=4.95" Printed 5/14/2020

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

<u>Page 24</u>

Summary for Pond IC: Infiltration Facility C

Inflow Area = 155,135 sf, 91.95% Impervious, Inflow Depth > 4.30" for 10-Year event Inflow = 16.72 cfs @ 12.09 hrs, Volume= 55,532 cf
Outflow = 14.14 cfs @ 12.15 hrs, Volume= 55,514 cf, Atten= 15%, Lag= 3.8 min Discarded = 1.04 cfs @ 10.70 hrs, Volume= 37,978 cf
Primary = 13.10 cfs @ 12.15 hrs, Volume= 17,536 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 141.82' @ 12.15 hrs Surf.Area= 5,439 sf Storage= 10,885 cf

Plug-Flow detention time= 37.1 min calculated for 55,322 cf (100% of inflow) Center-of-Mass det. time= 36.7 min (775.0 - 738.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	139.00'	4,509 cf	74.00'W x 73.50'L x 3.54'H Field A
			19,263 cf Overall - 7,991 cf Embedded = 11,272 cf x 40.0% Voids
#2A	139.50'	7,991 cf	Cultec R-330XLHD x 150 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 15 rows
	·	40.500.5	T () A () 1 0

12,500 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	140.70'	24.0" Round Culvert X 2.00
	•		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 139.50' / 140.70' S= -0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Discarded	139.00'	8.270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=1.04 cfs @ 10.70 hrs HW=139.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.04 cfs)

Primary OutFlow Max=13.08 cfs @ 12.15 hrs HW=141.82' (Free Discharge) 1=Culvert (Inlet Controls 13.08 cfs @ 3.61 fps)

Page 25

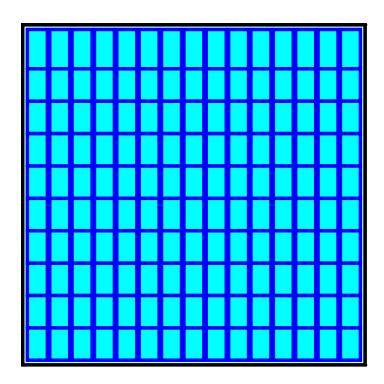
Pond IC: Infiltration Facility C - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 15 rows

52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

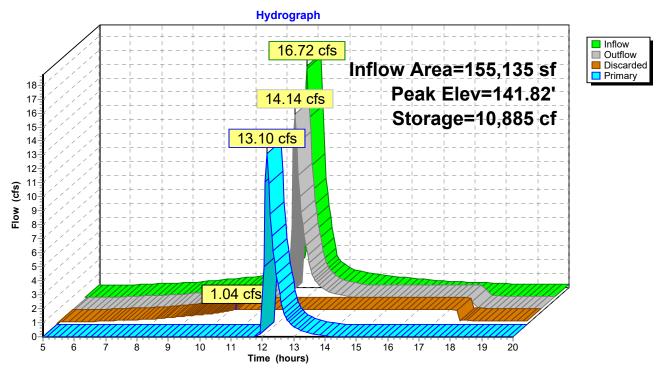
10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +12.0" End Stone x 2 = 73.50' Base Length


15 Rows x 52.0" Wide + 6.0" Spacing x 14 + 12.0" Side Stone x 2 = 74.00' Base Width 6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

150 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 15 Rows = 7,991.2 cf Chamber Storage

19,263.1 cf Field - 7,991.2 cf Chambers = 11,271.9 cf Stone x 40.0% Voids = 4,508.8 cf Stone Storage

Chamber Storage + Stone Storage = 12,500.0 cf = 0.287 af Overall Storage Efficiency = 64.9% Overall System Size = 73.50' x 74.00' x 3.54'


150 Chambers 713.4 cy Field 417.5 cy Stone

Page 26

Pond IC: Infiltration Facility C

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 27

Summary for Pond RGA: Rain Garden A

Inflow Area = 15,238 sf, 71.16% Impervious, Inflow Depth > 3.32" for 10-Year event

Inflow = 1.39 cfs @ 12.09 hrs, Volume= 4,211 cf

Outflow = 1.40 cfs @ 12.11 hrs, Volume= 3,383 cf, Atten= 0%, Lag= 1.1 min

Primary = 1.40 cfs @ 12.11 hrs, Volume= 3,383 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 141.44' @ 12.11 hrs Surf.Area= 1,114 sf Storage= 1,076 cf

Plug-Flow detention time= 90.4 min calculated for 3,372 cf (80% of inflow)

Center-of-Mass det. time= 39.3 min (809.3 - 770.0)

Volume	Invert	Avail.Storage	Storage Description
#1	139.60'	2,110 cf	ABOVE STORAGE (Prismatic)Listed below (Recalc)
#2	136.60'	79 cf	MEDIA (Prismatic)Listed below (Recalc)
			786 cf Overall x 10.0% Voids

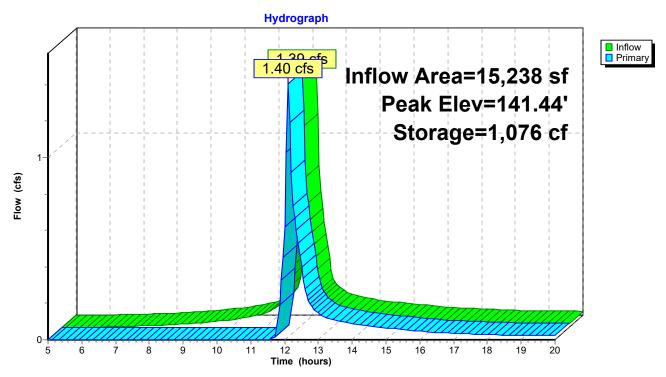
2,189 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
139.60	261	0	0
140.00	372	127	127
141.00	687	530	656
142.00	1,059	873	1,529
142.50	1,266	581	2,110
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
136.60	262	0	0
139.60	262	786	786

Device	Routing	Invert	Outlet Devices		
#1	Primary	135.93'	12.0" Round Culvert		
			L= 17.0' CPP, square edge headwall, Ke= 0.500		
			Inlet / Outlet Invert= 135.93' / 135.63' S= 0.0176 '/' Cc= 0.900		
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		
#2	Device 1	141.10'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)		
			Head (feet) 0.00 0.30		
			Width (feet) 1.00 2.00		
#3	Device 1	141.40'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600		
			Limited to weir flow at low heads		
#4	Primary	141.50'	12.0' long x 10.0' breadth Broad-Crested Rectangular Weir		
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60		
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64		

Primary OutFlow Max=1.34 cfs @ 12.11 hrs HW=141.44' (Free Discharge)

-1=Culvert (Passes 1.34 cfs of 8.47 cfs potential flow)


2=Custom Weir/Orifice (Orifice Controls 0.90 cfs @ 1.99 fps)

3=Orifice/Grate (Weir Controls 0.45 cfs @ 0.67 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 28

Pond RGA: Rain Garden A

Prepared by Microsoft

Type III 24-hr 10-Year Rainfall=4.95" Printed 5/14/2020

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 29

Summary for Pond RGB: Rain Garden B

Inflow Area = 67,519 sf, 61.73% Impervious, Inflow Depth > 3.71" for 10-Year event

Inflow = 6.68 cfs @ 12.09 hrs, Volume= 20,882 cf

Outflow = 2.95 cfs @ 12.28 hrs, Volume= 17,460 cf, Atten= 56%, Lag= 11.6 min

Primary = 2.95 cfs @ 12.28 hrs, Volume= 17,460 cf

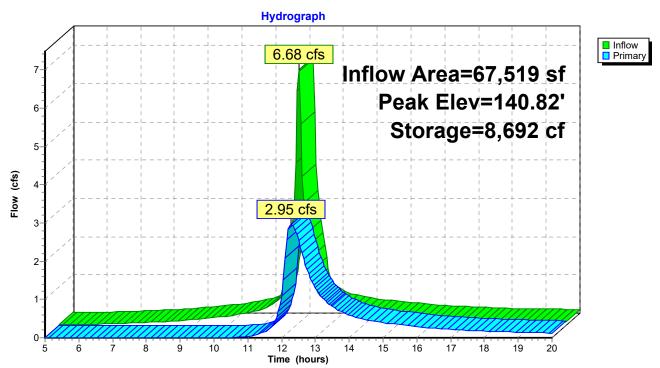
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 140.82' @ 12.28 hrs Surf.Area= 7,197 sf Storage= 8,692 cf

Plug-Flow detention time= 117.1 min calculated for 17,458 cf (84% of inflow)

Center-of-Mass det. time= 69.9 min (828.0 - 758.1)

Volume	Invert	Avail.Storage	Storage Description
#1	138.50'	16,696 cf	ABOVE STORAGE (Prismatic)Listed below (Recalc)
#2	136.00'	586 cf	MEDIA (Prismatic)Listed below (Recalc)
			5,863 cf Overall x 10.0% Voids

17,282 cf Total Available Storage


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
138.50	2,345	0	0
139.00	2,792	1,284	1,284
140.00	3,753	3,273	4,557
141.00	5,086	4,420	8,976
142.00	6,481	5,784	14,760
142.25	9,009	1,936	16,696
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
136.00	2,345	0	0
138.50	2,345	5,863	5,863

Device	Routing	Invert	Outlet Devices
#1	Primary	139.00'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 2.00 2.00 3.00
			Width (feet) 0.00 1.00 5.00 5.00

Primary OutFlow Max=2.94 cfs @ 12.28 hrs HW=140.82' (Free Discharge) 1=Custom Weir/Orifice (Weir Controls 2.94 cfs @ 3.54 fps)

Page 30

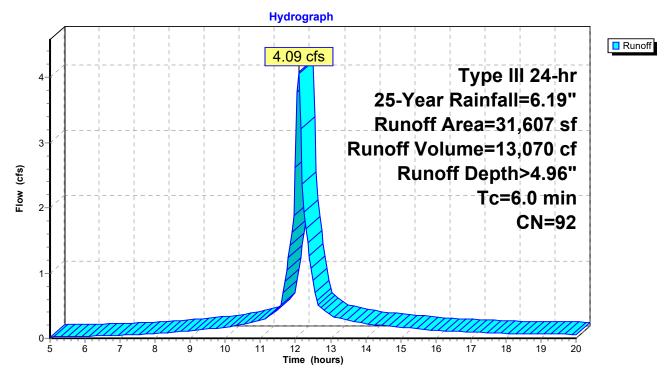
Pond RGB: Rain Garden B

Page 31

3395.1 - 0 Pond Street - Proposed Condition

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC


Summary for Subcatchment AR: Access Road

Runoff = 4.09 cfs @ 12.09 hrs, Volume= 13,070 cf, Depth> 4.96"

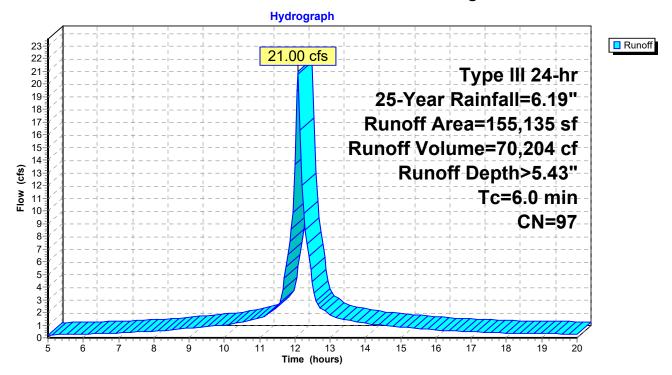
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.19"

A	rea (sf)	CN	Description		
	9,745 80 >75% Grass cover			s cover, Go	ood, HSG D
	21,862	98	Paved roads w/curbs & sewers, HSG D		
	31,607	92	Weighted A	verage	
	9,745		30.83% Per	vious Area	a
	21,862		69.17% Imp	ervious Are	rea
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	•
6.0					Direct Entry, AB

Subcatchment AR: Access Road

Page 32

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC


Summary for Subcatchment CP: Central Parking

Runoff = 21.00 cfs @ 12.09 hrs, Volume= 70,204 cf, Depth> 5.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.19"

Area (sf) CN	Description		
95	5 91	Gravel roads, HSG D		
12,396	80	>75% Grass cover, Good, HSG D		
58,190	98	Roofs, HSG D		
84,454	4 98	Paved parking, HSG D		
155,135	5 97	97 Weighted Average		
12,491	8.05% Pervious Area			
142,644	4	91.95% Impervious Area		
Tc Leng				
(min) (fee	et) (ft/	/ft) (ft/sec) (cfs)		
6.0		Direct Entry,		

Subcatchment CP: Central Parking

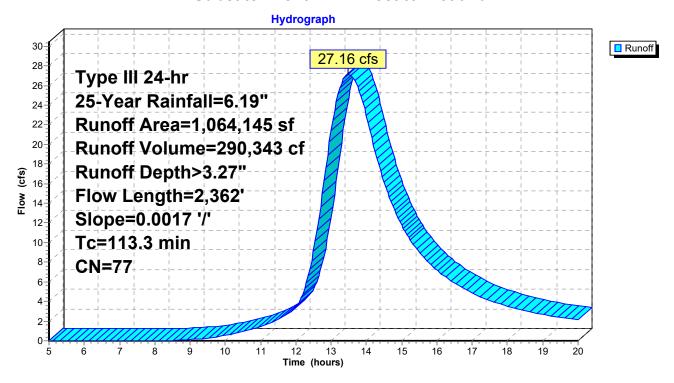
Page 33

3395.1 - 0 Pond Street - Proposed Condition

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Summary for Subcatchment DW: Direct to Wetland


Runoff = 27.16 cfs @ 13.48 hrs, Volume= 290,343 cf, Depth> 3.27"

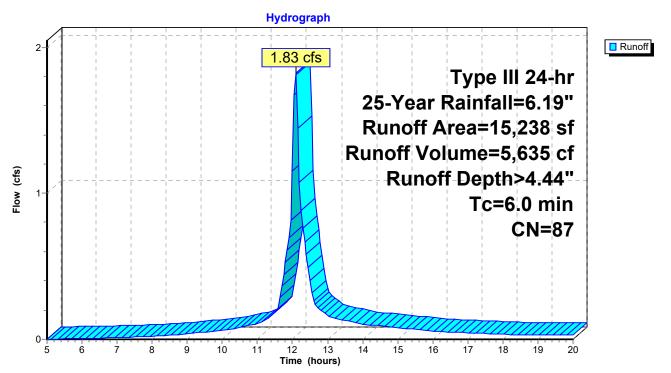
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.19"

	Α	rea (sf)	CN E	Description		
		13,667	30 V	Voods, Go	od, HSG A	
		3,586	30 E	Brush, Goo	d, HSG A	
*		173	78 V	Vetland, H	SG A	
		270	98 F	Paved road	s w/curbs 8	R sewers, HSG A
		200			od, HSG B	
		596			,	ood, HSG B
	2	47,105		•	od, HSG D	
		13,695		Dirt roads, I		
		1,434		Fravel road		
		59,032				ood, HSG D
*	7	20,013		Vetlands, F		
		1,547			ed roofs, HS	
_		2,827				& sewers, HSG D
		64,145		Veighted A		
	1,0	59,501			vious Area	
		4,644			ervious Area	a
		1,547	3	3.31% Un	connected	
	т.	1 41-	Olana.	\/-1:4	0	Description
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	01 (51 AD
	56.3	50	0.0017	0.01		Sheet Flow, AB
	0.0	244	0.0047	0.66		Woods: Dense underbrush n= 0.800 P2= 3.35"
	8.6	341	0.0017	0.66		Shallow Concentrated Flow, BC
	0.0	E4	0.0047	2.54	44.00	Unpaved Kv= 16.1 fps
	0.2	51	0.0017	3.51	11.02	Pipe Channel, CD 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
	48.2	1 020	0.0017	0.66		n= 0.011 Concrete pipe, straight & clean
	40.2	1,920	0.0017	0.00		Shallow Concentrated Flow, DE Unpaved Kv= 16.1 fps
_	112.2	2 262	Total			Olipaved IXV- 10.1 lps
	113.3	2,362	Total			

Page 34

Subcatchment DW: Direct to Wetland

Page 35


Summary for Subcatchment ER: Entrance Road

Runoff = 1.83 cfs @ 12.09 hrs, Volume= 5,635 cf, Depth> 4.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.19"

Area (sf) CN	Description			
2,14	4 39	>75% Grass	cover, Go	lood, HSG A	
2,050	0 98	Paved parkii	ng, HSG A	A	
15	5 61	>75% Grass	cover, Go	lood, HSG B	
862	2 98	Paved roads	w/curbs &	& sewers, HSG B	
2,23	2,235 80 >75% Grass cover, Good, HSG D				
7,932	2 98	Paved roads	w/curbs 8	& sewers, HSG D	
15,238	8 87	Weighted Av	/erage		
4,394	4	28.84% Perv	/ious Area	a	
10,844	4	71.16% Imp	ervious Are	rea	
Tc Leng		,	Capacity	•	
(min) (fee	et) (ft/	ft) (ft/sec)	(cfs)		
6.0				Direct Entry, AB	

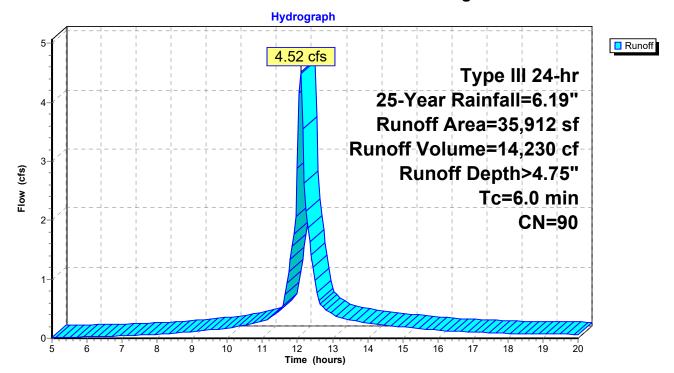
Subcatchment ER: Entrance Road

Page 36

3395.1 - 0 Pond Street - Proposed Condition

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC


Summary for Subcatchment WP: West Parking

Runoff = 4.52 cfs @ 12.09 hrs, Volume= 14,230 cf, Depth> 4.75"

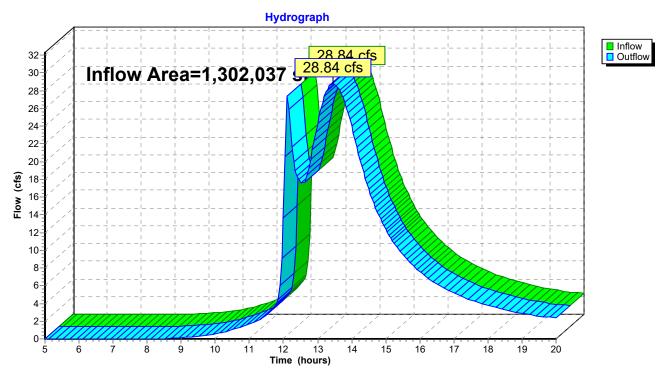
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.19"

Area	(sf) CN	Description						
16,	096 80	80 >75% Grass cover, Good, HSG D						
19,	816 98	Paved park	Paved parking, HSG D					
35,	35,912 90 Weighted Average							
16,	a							
19,	816	55.18% lmp	pervious Are	rea				
Tc Le	ength Slo	oe Velocity	Capacity	Description				
(min) (feet) (ft/	ft) (ft/sec)	(cfs)					
6.0				Direct Entry,				

Subcatchment WP: West Parking

Page 37

Summary for Reach 2R: Total OffSite


Inflow Area = 1,302,037 sf, 15.35% Impervious, Inflow Depth > 3.19" for 25-Year event

Inflow = 28.84 cfs @ 13.46 hrs, Volume= 346,204 cf

Outflow = 28.84 cfs @ 13.46 hrs, Volume= 346,204 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: Total OffSite

Prepared by Microsoft

Type III 24-hr 25-Year Rainfall=6.19"
Printed 5/14/2020

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 38

Summary for Pond IC: Infiltration Facility C

Inflow Area = 155,135 sf, 91.95% Impervious, Inflow Depth > 5.43" for 25-Year event Inflow = 21.00 cfs @ 12.09 hrs, Volume= 70,204 cf
Outflow = 19.84 cfs @ 12.12 hrs, Volume= 70,182 cf, Atten= 6%, Lag= 1.9 min 1.04 cfs @ 10.15 hrs, Volume= 42,857 cf
Primary = 18.79 cfs @ 12.12 hrs, Volume= 27,325 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 142.09' @ 12.12 hrs Surf.Area= 5,439 sf Storage= 11,528 cf

Plug-Flow detention time= 35.8 min calculated for 70,172 cf (100% of inflow) Center-of-Mass det. time= 35.5 min (771.9 - 736.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	139.00'	4,509 cf	74.00'W x 73.50'L x 3.54'H Field A
			19,263 cf Overall - 7,991 cf Embedded = 11,272 cf x 40.0% Voids
#2A	139.50'	7,991 cf	Cultec R-330XLHD x 150 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 15 rows
	·	40.500.5	T () A () 1 0

12,500 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	140.70'	24.0" Round Culvert X 2.00
	•		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 139.50' / 140.70' S= -0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Discarded	139.00'	8.270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=1.04 cfs @ 10.15 hrs HW=139.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.04 cfs)

Primary OutFlow Max=18.06 cfs @ 12.12 hrs HW=142.06' (Free Discharge) 1=Culvert (Inlet Controls 18.06 cfs @ 3.97 fps)

Page 39

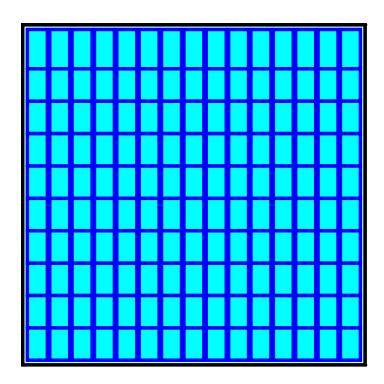
Pond IC: Infiltration Facility C - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 15 rows

52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

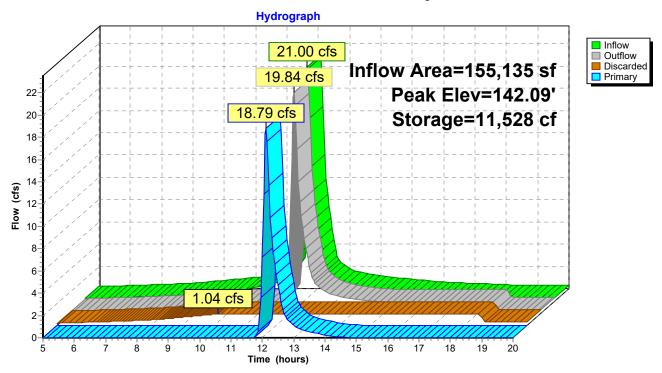
10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +12.0" End Stone x 2 = 73.50' Base Length


15 Rows x 52.0" Wide + 6.0" Spacing x 14 + 12.0" Side Stone x 2 = 74.00' Base Width 6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

150 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 15 Rows = 7,991.2 cf Chamber Storage

19,263.1 cf Field - 7,991.2 cf Chambers = 11,271.9 cf Stone x 40.0% Voids = 4,508.8 cf Stone Storage

Chamber Storage + Stone Storage = 12,500.0 cf = 0.287 af Overall Storage Efficiency = 64.9% Overall System Size = 73.50' x 74.00' x 3.54'


150 Chambers 713.4 cy Field 417.5 cy Stone

Page 40

Pond IC: Infiltration Facility C

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 41

Summary for Pond RGA: Rain Garden A

Inflow Area = 15,238 sf, 71.16% Impervious, Inflow Depth > 4.44" for 25-Year event

Inflow = 1.83 cfs @ 12.09 hrs, Volume= 5,635 cf

Outflow = 1.83 cfs @ 12.10 hrs, Volume= 4,801 cf, Atten= 0%, Lag= 0.7 min

Primary = 1.83 cfs @ 12.10 hrs, Volume= 4,801 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 141.46' @ 12.10 hrs Surf.Area= 1,121 sf Storage= 1,092 cf

Plug-Flow detention time= 78.5 min calculated for 4,785 cf (85% of inflow)

Center-of-Mass det. time= 35.3 min (798.4 - 763.1)

Volume	Invert	Avail.Storage	Storage Description
#1	139.60'	2,110 cf	ABOVE STORAGE (Prismatic)Listed below (Recalc)
#2	136.60'	79 cf	MEDIA (Prismatic)Listed below (Recalc)
			786 cf Overall x 10.0% Voids

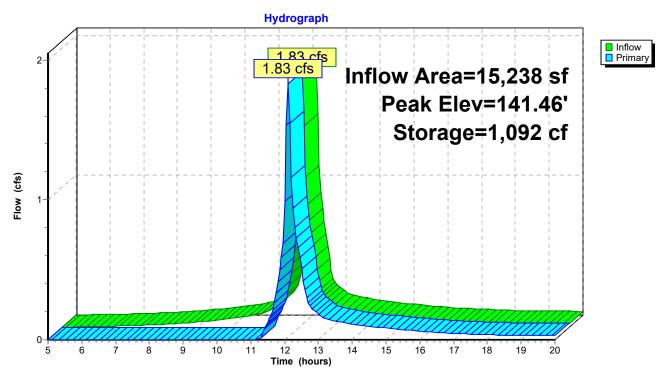
2,189 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
139.60	261	0	0
140.00	372	127	127
141.00	687	530	656
142.00	1,059	873	1,529
142.50	1,266	581	2,110
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
136.60	262	0	0
139.60	262	786	786

Device	Routing	Invert	Outlet Devices
#1	Primary	135.93'	12.0" Round Culvert
	•		L= 17.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 135.93' / 135.63' S= 0.0176 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	141.10'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 0.30
			Width (feet) 1.00 2.00
#3	Device 1	141.40'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	141.50'	12.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=1.77 cfs @ 12.10 hrs HW=141.46' (Free Discharge)

1=Culvert (Passes 1.77 cfs of 8.48 cfs potential flow)


2=Custom Weir/Orifice (Orifice Controls 0.95 cfs @ 2.12 fps)

-3=Orifice/Grate (Weir Controls 0.81 cfs @ 0.82 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 42

Pond RGA: Rain Garden A

Prepared by Microsoft

Type III 24-hr 25-Year Rainfall=6.19"
Printed 5/14/2020

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 43

Summary for Pond RGB: Rain Garden B

Inflow Area = 67,519 sf, 61.73% Impervious, Inflow Depth > 4.85" for 25-Year event

Inflow = 8.61 cfs @ 12.09 hrs, Volume= 27,300 cf

Outflow = 4.61 cfs @ 12.22 hrs, Volume= 23,734 cf, Atten= 46%, Lag= 8.2 min

Primary = 4.61 cfs @ 12.22 hrs, Volume= 23,734 cf

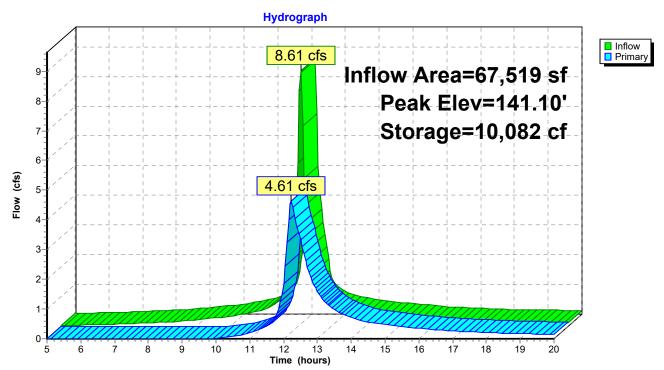
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 141.10' @ 12.22 hrs Surf.Area= 7,572 sf Storage= 10,082 cf

Plug-Flow detention time= 103.5 min calculated for 23,731 cf (87% of inflow)

Center-of-Mass det. time= 62.8 min (815.6 - 752.8)

Volume	Invert	Avail.Storage	Storage Description
#1	138.50'	16,696 cf	ABOVE STORAGE (Prismatic)Listed below (Recalc)
#2	136.00'	586 cf	MEDIA (Prismatic)Listed below (Recalc)
			5,863 cf Overall x 10.0% Voids

17,282 cf Total Available Storage


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
138.50	2,345	0	0
139.00	2,792	1,284	1,284
140.00	3,753	3,273	4,557
141.00	5,086	4,420	8,976
142.00	6,481	5,784	14,760
142.25	9,009	1,936	16,696
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
136.00	2,345	0	0
138.50	2,345	5,863	5,863

Device	Routing	Invert	Outlet Devices
#1	Primary	139.00'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 2.00 2.00 3.00
			Width (feet) 0.00 1.00 5.00 5.00

Primary OutFlow Max=4.53 cfs @ 12.22 hrs HW=141.09' (Free Discharge) 1=Custom Weir/Orifice (Weir Controls 4.53 cfs @ 3.08 fps)

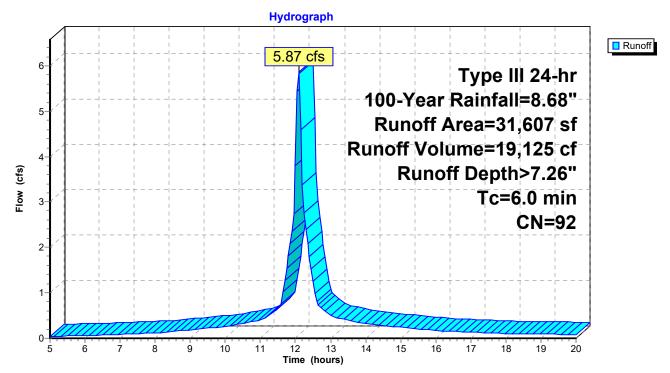
Page 44

Pond RGB: Rain Garden B

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 45


Summary for Subcatchment AR: Access Road

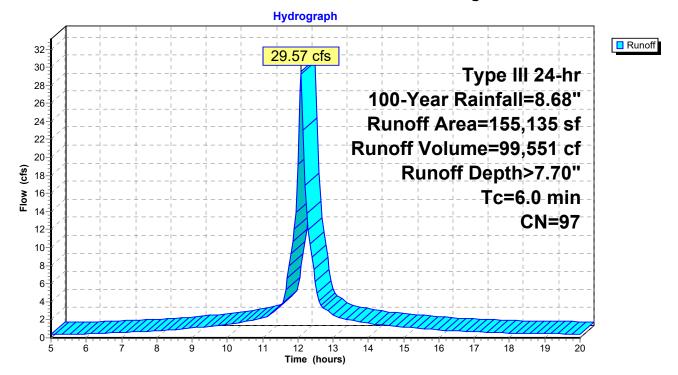
Runoff = 5.87 cfs @ 12.09 hrs, Volume= 19,125 cf, Depth> 7.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.68"

Ar	ea (sf)	CN Description							
	9,745	9,745 80 >75% Grass cover, Good, HSG D							
	21,862	98	Paved road	Paved roads w/curbs & sewers, HSG D					
;	31,607 92 Weighted Average								
	9,745 30.83% Pervious Area								
21,862 69.17% Impervious Area				rea					
То	Longth	Clana	Valacity	Canacity	Description				
	Length	Slope	,	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry, AB				

Subcatchment AR: Access Road

Page 46


Summary for Subcatchment CP: Central Parking

Runoff = 29.57 cfs @ 12.09 hrs, Volume= 99,551 cf, Depth> 7.70"

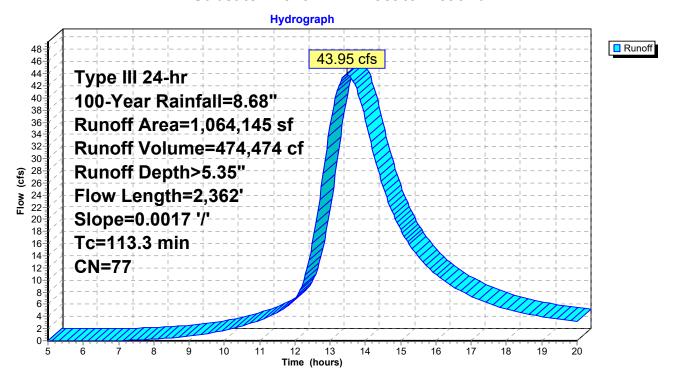
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.68"

Area (sf) CN	Description		
95	5 91	Gravel roads, HSG D		
12,396	80	>75% Grass cover, Good, HSG D		
58,190	98	Roofs, HSG D		
84,454	4 98	Paved parking, HSG D		
155,135	5 97	Weighted Average		
12,491	1	8.05% Pervious Area		
142,644	4	91.95% Impervious Area		
Tc Leng				
(min) (fee	et) (ft/	/ft) (ft/sec) (cfs)		
6.0		Direct Entry,		

Subcatchment CP: Central Parking

Page 47

Summary for Subcatchment DW: Direct to Wetland


Runoff = 43.95 cfs @ 13.47 hrs, Volume= 474,474 cf, Depth> 5.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.68"

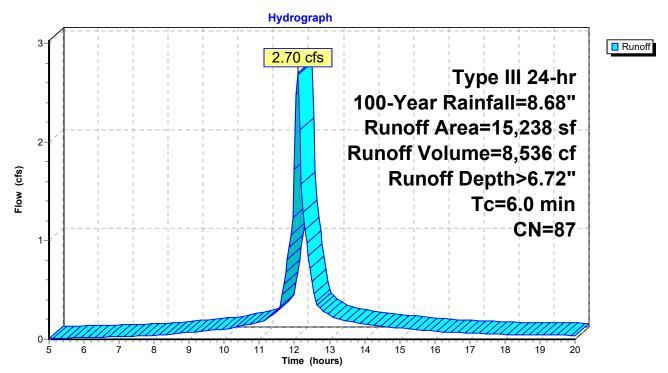
	Α	rea (sf)	CN E	Description		
		13,667	30 V	Voods, Go	od, HSG A	
		3,586	30 E	Brush, Goo	d, HSG A	
*		173	78 V	Vetland, H	SG A	
		270	98 F	Paved road	s w/curbs &	& sewers, HSG A
		200	55 V	Voods, Go	od, HSG B	
		596	61 >	75% Gras	s cover, Go	ood, HSG B
	2	47,105	77 V	Voods, Go	od, HSG D	
		13,695)irt roads, I		
		1,434	91 (Gravel road	s, HSG D	
		59,032			•	ood, HSG D
*	7	20,013		Vetlands, F		
		1,547			ed roofs, H	
_		2,827				R sewers, HSG D
		64,145		Veighted A	•	
	1,0	59,501	_		vious Area	
		4,644			ervious Are	a
		1,547	3	3.31% Un	connected	
	_	1 41.	01	V/-1!6	0	Describetion
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	01 (51 AD
	56.3	50	0.0017	0.01		Sheet Flow, AB
	0.6	244	0.0047	0.66		Woods: Dense underbrush n= 0.800 P2= 3.35"
	8.6	341	0.0017	0.66		Shallow Concentrated Flow, BC
	0.2	E 1	0.0017	2.51	11.00	Unpaved Kv= 16.1 fps
	0.2	51	0.0017	3.51	11.02	Pipe Channel, CD 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
	48.2	1,920	0.0017	0.66		n= 0.011 Concrete pipe, straight & clean Shallow Concentrated Flow, DE
	40.2	1,920	0.0017	0.00		Unpaved Kv= 16.1 fps
_	113.3	2 362	Total			στιράνου ττν- το.τ τρο
	113.3	2,362	ı Ulai			

Page 48

Subcatchment DW: Direct to Wetland

Prepared by Microsoft HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 49


Summary for Subcatchment ER: Entrance Road

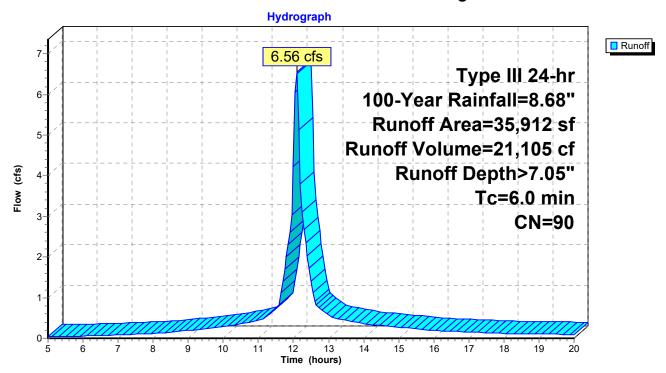
Runoff = 2.70 cfs @ 12.09 hrs, Volume= 8,536 cf, Depth> 6.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.68"

Are	a (sf)	CN	Description		
	2,144	39	>75% Grass cover, Good, HSG A		
2	2,050	98	Paved park	ng, HSG A	Ą
	15	61	>75% Gras	s cover, Go	ood, HSG B
	862	98	Paved road	s w/curbs &	& sewers, HSG B
2	2,235	80	>75% Gras	s cover, Go	ood, HSG D
	7,932	98	Paved roads w/curbs & sewers, HSG D		
1:	5,238	87	Weighted A	verage	
4	4,394		28.84% Per	vious Area	a
10	0,844		71.16% lmp	ervious Are	rea
Tc L	₋ength	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry, AB

Subcatchment ER: Entrance Road

Page 50


Summary for Subcatchment WP: West Parking

Runoff = 6.56 cfs @ 12.09 hrs, Volume= 21,105 cf, Depth> 7.05"

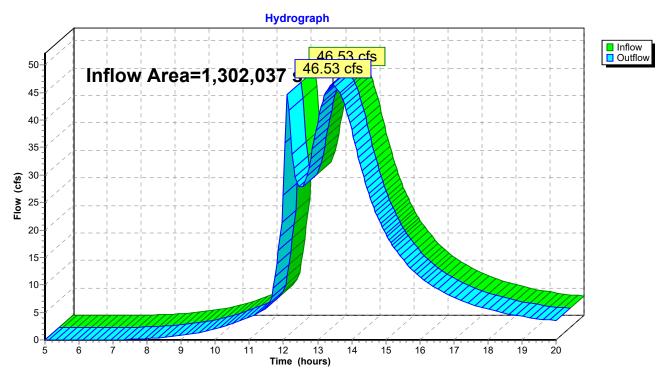
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.68"

Area	(sf) CN	Description	Description		
16,	096 80	>75% Gras	s cover, Go	lood, HSG D	
19,	816 98	Paved park	Paved parking, HSG D		
35,	912 90	Weighted A	verage		
16,	096	44.82% Per	vious Area	a	
19,	816	55.18% lmp	pervious Are	rea	
Tc Le	ength Slo	oe Velocity	Capacity	Description	
(min) (feet) (ft/	ft) (ft/sec)	(cfs)		
6.0				Direct Entry,	

Subcatchment WP: West Parking

Page 51

Summary for Reach 2R: Total OffSite


Inflow Area = 1,302,037 sf, 15.35% Impervious, Inflow Depth > 5.24" for 100-Year event

Inflow = 46.53 cfs @ 13.45 hrs, Volume= 568,215 cf

Outflow = 46.53 cfs @ 13.45 hrs, Volume= 568,215 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: Total OffSite

Prepared by Microsoft

Type III 24-hr 100-Year Rainfall=8.68" Printed 5/14/2020

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 52

Summary for Pond IC: Infiltration Facility C

155,135 sf, 91.95% Impervious, Inflow Depth > 7.70" for 100-Year event Inflow Area = Inflow 29.57 cfs @ 12.09 hrs, Volume= 99.551 cf 28.12 cfs @ 12.11 hrs, Volume= Outflow = 99,520 cf, Atten= 5%, Lag= 1.6 min 8.90 hrs, Volume= Discarded = 49,892 cf 1.04 cfs @ Primary 27.08 cfs @ 12.11 hrs, Volume= 49,628 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 142.49' @ 12.11 hrs Surf.Area= 5,439 sf Storage= 12,391 cf

Plug-Flow detention time= 34.6 min calculated for 99,174 cf (100% of inflow) Center-of-Mass det. time= 34.2 min (768.6 - 734.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	139.00'	4,509 cf	74.00'W x 73.50'L x 3.54'H Field A
			19,263 cf Overall - 7,991 cf Embedded = 11,272 cf x 40.0% Voids
#2A	139.50'	7,991 cf	Cultec R-330XLHD x 150 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 15 rows
	·	40.500.5	T () A () 1 0

12,500 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	140.70'	24.0" Round Culvert X 2.00
	-		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 139.50' / 140.70' S= -0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Discarded	139.00'	8.270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=1.04 cfs @ 8.90 hrs HW=139.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.04 cfs)

Primary OutFlow Max=26.44 cfs @ 12.11 hrs HW=142.46' (Free Discharge) 1=Culvert (Inlet Controls 26.44 cfs @ 4.52 fps)

Page 53

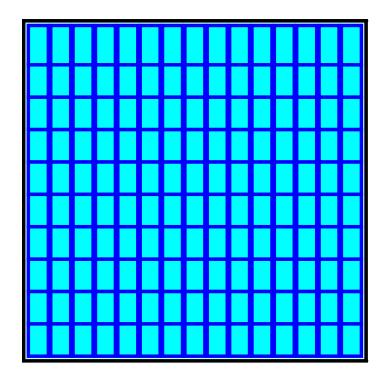
Pond IC: Infiltration Facility C - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 15 rows

52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

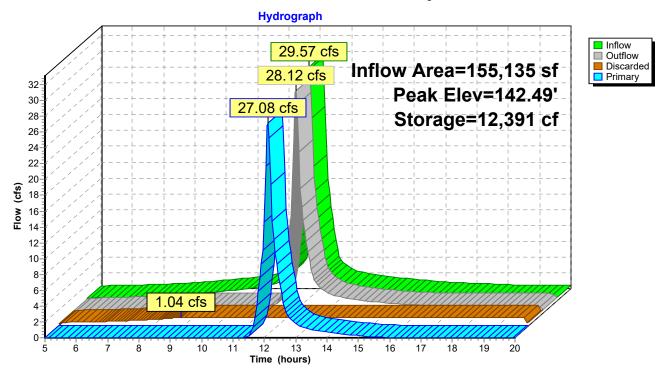
10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +12.0" End Stone x 2 = 73.50' Base Length


15 Rows x 52.0" Wide + 6.0" Spacing x 14 + 12.0" Side Stone x 2 = 74.00' Base Width 6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

150 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 15 Rows = 7,991.2 cf Chamber Storage

19,263.1 cf Field - 7,991.2 cf Chambers = 11,271.9 cf Stone x 40.0% Voids = 4,508.8 cf Stone Storage

Chamber Storage + Stone Storage = 12,500.0 cf = 0.287 af Overall Storage Efficiency = 64.9% Overall System Size = 73.50' x 74.00' x 3.54'


150 Chambers 713.4 cy Field 417.5 cy Stone

Page 54

Pond IC: Infiltration Facility C

Prepared by Microsoft

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 55

Summary for Pond RGA: Rain Garden A

Inflow Area = 15,238 sf, 71.16% Impervious, Inflow Depth > 6.72" for 100-Year event

Inflow = 2.70 cfs @ 12.09 hrs, Volume= 8,536 cf

Outflow = 2.70 cfs @ 12.10 hrs, Volume= 7,695 cf, Atten= 0%, Lag= 0.7 min

Primary = 2.70 cfs @ 12.10 hrs, Volume= 7,695 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 141.50' @ 12.10 hrs Surf.Area= 1,135 sf Storage= 1,124 cf

Plug-Flow detention time= 63.0 min calculated for 7,694 cf (90% of inflow)

Center-of-Mass det. time= 29.8 min (784.2 - 754.4)

Volume	Invert	Avail.Storage	Storage Description
#1	139.60'	2,110 cf	ABOVE STORAGE (Prismatic)Listed below (Recalc)
#2	136.60'	79 cf	MEDIA (Prismatic)Listed below (Recalc)
			786 cf Overall x 10.0% Voids

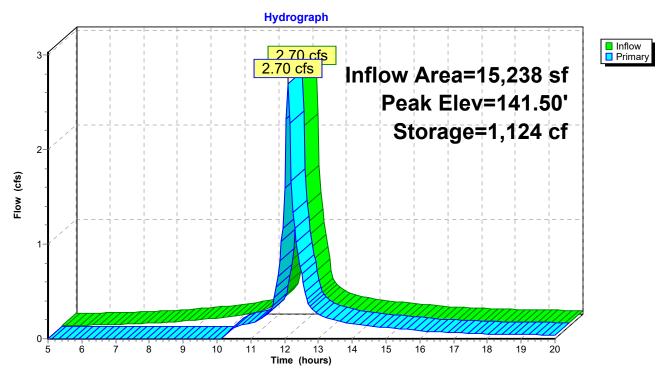
2,189 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
139.60	261	0	0
140.00	372	127	127
141.00	687	530	656
142.00	1,059	873	1,529
142.50	1,266	581	2,110
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
136.60	262	0	0
139.60	262	786	786

Device	Routing	Invert	Outlet Devices
#1	Primary	135.93'	12.0" Round Culvert
	_		L= 17.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 135.93' / 135.63' S= 0.0176 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	141.10'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 0.30
			Width (feet) 1.00 2.00
#3	Device 1	141.40'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	141.50'	12.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=2.69 cfs @ 12.10 hrs HW=141.50' (Free Discharge)

1=Culvert (Passes 2.69 cfs of 8.51 cfs potential flow)


2=Custom Weir/Orifice (Orifice Controls 1.05 cfs @ 2.33 fps)

-3=Orifice/Grate (Weir Controls 1.64 cfs @ 1.03 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 56

Pond RGA: Rain Garden A

Type III 24-hr 100-Year Rainfall=8.68" Printed 5/14/2020

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 57

Summary for Pond RGB: Rain Garden B

Inflow Area = 67,519 sf, 61.73% Impervious, Inflow Depth > 7.15" for 100-Year event

Inflow = 12.43 cfs @ 12.09 hrs, Volume= 40,230 cf

Outflow = 9.06 cfs @ 12.17 hrs, Volume= 36,418 cf, Atten= 27%, Lag= 4.9 min

Primary = 9.06 cfs @ 12.17 hrs, Volume= 36,418 cf

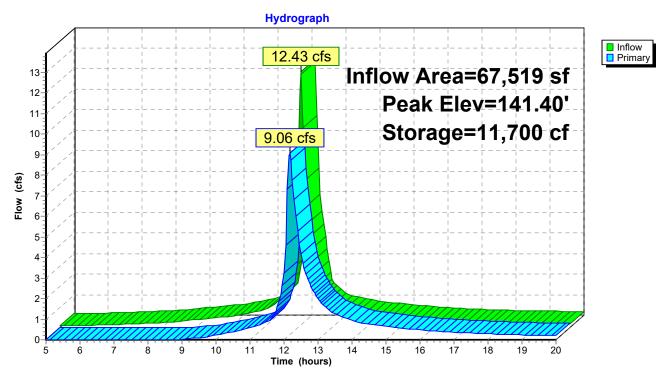
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 141.40' @ 12.17 hrs Surf.Area= 7,987 sf Storage= 11,700 cf

Plug-Flow detention time= 84.3 min calculated for 36,290 cf (90% of inflow)

Center-of-Mass det. time= 52.4 min (798.7 - 746.3)

Volume	Invert	Avail.Storage	Storage Description
#1	138.50'	16,696 cf	ABOVE STORAGE (Prismatic)Listed below (Recalc)
#2	136.00'	586 cf	MEDIA (Prismatic)Listed below (Recalc)
			5,863 cf Overall x 10.0% Voids

17,282 cf Total Available Storage


Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
138.50	2,345	0	0	
139.00	2,792	1,284	1,284	
140.00	3,753	3,273	4,557	
141.00	5,086	4,420	8,976	
142.00	6,481	5,784	14,760	
142.25	9,009	1,936	16,696	
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
136.00	2,345	0	0	
138.50	2.345	5.863	5.863	

Device	Routing	Invert	Outlet Devices
#1	Primary	139.00'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 2.00 2.00 3.00
			Width (feet) 0.00 1.00 5.00 5.00

Primary OutFlow Max=8.84 cfs @ 12.17 hrs HW=141.39' (Free Discharge) 1=Custom Weir/Orifice (Weir Controls 8.84 cfs @ 3.02 fps)

Page 58

Pond RGB: Rain Garden B

APPENDIX C

STORMWATER MANAGEMENT STANDARD 2 – PEAK RATE OF RUNOFF
STORMWATER MANAGEMENT STANDARD 3 – RECHARGE VOLUME
STORMWATER MANAGEMENT STANDARD 4 – WATER QUALITY VOLUME
TOTAL VOLUME OF RUNOFF
CLOSED DRAINAGE SYSTEM/PIPE SIZING CALCULATIONS
SYMPLE DYNAMIC SIZING

Project Name: Shinglemill Apartments Calculations by: DJD

Project Address: 0 Pond Street, Rockland Calculations date: May 13, 2020

Client: Shinglemill, LLC Checked by: JEN

Location: 4 First Street, Bridgewater **Checked Date:** May 14, 2020

STORMWATER MANAGEMENT STANDARD 2 - PEAK RATE OF RUNOFF

DESIGN STORM (YEAR)	EXISTING PEAK RUNOFF (CFS)	PROPOSEDPEAK RUNOFF (CFS)	REDUCTION IN PEAK RUNOFF
2	11.54	10.04	13.0%
10	23.38	20.30	13.2%
25	33.24	28.84	13.2%
100	53.78	46.53	13.5%

NOTE: PEAK RATES SHOWN WERE TAKEN FROM THE EXISTING AND PROPOSED HYDROCAD ANALYSES.

Project Number:
Project Name:
Project Address:
Client:
Location:

3395.1 Shinglemill Apartments 0 Pond Street, Rockland Shinglemill, LLC 4 First Street, Bridgewater Date: May
Calculations by: DJE
Calculations date: May
Checked by: JEN
Checked Date: May

May 14, 2020 DJD May 13, 2020 JEN May 14, 2020

STORMWATER MANAGEMENT STANDARD 3 - RECHARGE VOLUME

	F	HYDROLOGIC SOIL GROU	TOTAL		
	A	В	C	D	IOIAL
IMPERVIOUS AREA (S.F.)	2,320	862	0	196,628	199,810
INCHES OF RUNOFF TO BE RECHARGED	0.60	0.35	0.25	0.10	
REQUIRED RECHARGE VOLUME (FT³)	116	25	0	1,639	1,780

CAPTURE AREA ADJUSTMENT - ADJUSTED MINIMUM REQUIRED RECHARGE VOLUME

MINIMUM OF 65% OF IMPERVIOUS AREA MUST BE DIRECTED TO THE RECHARGE BMP; 65 % IS =	129,877	SF	
IMPERVIOUS SITE AREA DRAINING TO BMP =	142,644	SF	71.4% PERCENTAGE OF IMPERVIOUS AREA DIVERTED TO INFILTRATION FACILITY
RATIO OF TOTAL IMPERVIOUS AREA TO IMPERVIOUS AREA DRAINING TO RECHARGE BMP =	1.40		=TOTAL IMPERVIOUS AREA IMPERVIOUS AREA DRAINING TO THE RECHARGE AREA
ADJUSTED REQUIRED RECHARGE VOLUME=	2,493	CF	= RATIO OF IMPERVIOUS AREA x REQUIRED RECHARGE VOLUME
PROPOSED RECHARGE VOLUME	6,603	CF	TOTAL AVAILABLE RECHARGE VOLUME

PROPOSED DRAWDOWN FOR RECHARGE STRUCTURES

Infiltration Chambers C

A = AREA OF PROPOSED LEACHING STRUCTURE 5,439 SQ. FT.

Rv = STORAGE VOLUME = 6,603 CU. FT.

K = SATURATED HYDRAULIC CONDUCTIVITY (RAWLS RATE) = VALUE IS BASED ON A HYDRAULIC SOIL GROUP

T = ALLOWABLE DRAWDOWN DURING PEAK (USE 2 HRS) = 72 HRS

DRAWDOWN TIME T= Rv = 1.8 HOURS TO EMPTY THE RECHARGE BMP \times 1.8 HOURS, SO DRAWDOWN IS OK

Project Name: Shinglemill Apartments Calculations by: DJD

Project Address: 0 Pond Street, Rockland Calculations date: May 13, 2020

Client: Shinglemill, LLC Checked by: JEN

Location: 4 First Street, Bridgewater **Checked Date:** May 14, 2020

STORMWATER MANAGEMENT STANDARD 4 - WATER QUALITY VOLUME SITE TOTAL

	DEPTH TO TREAT (IN.)	IMPERVIOUS AREA (SF)	WATER VOLUME (CF)
WATER QUALITY VOLUME (if discharging to an area of high rate of infiltration, or sensitive area)	1	199,810	16,651
NET WATER QUALITY VOLUME			16,651

Project Name: Shinglemill Apartments Calculations by: DJD

Project Address: 0 Pond Street, Rockland Calculations date: May 13, 2020

Client:Shinglemill, LLCChecked by:JENLocation:4 First Street, BridgewaterChecked Date:May 14, 2020

STORMWATER MANAGEMENT STANDARD 4 - WATER QUALITY VOLUME (RAIN GRADEN A)

	DEPTH TO TREAT (IN.)	IMPERVIOUS AREA (SF)	WATER VOLUME (CF)
WATER QUALITY VOLUME (if discharging to an area of high rate of infiltration, or sensitive area)	1	10,844	904
NET WATER QUALITY VOLUME			904

Project Name: Shinglemill Apartments Calculations by: DJD

Project Address: 0 Pond Street, Rockland Calculations date: May 13, 2020

Client:Shinglemill, LLCChecked by:JENLocation:4 First Street, BridgewaterChecked Date:May 14, 2020

STORMWATER MANAGEMENT STANDARD 4 - WATER QUALITY VOLUME (RAIN GRADEN B)

	DEPTH TO TREAT (IN.)	IMPERVIOUS AREA (SF)	WATER VOLUME (CF)
WATER QUALITY VOLUME (if discharging to an area of high rate of infiltration, or sensitive area)	1	41,678	3,473
NET WATER QUALITY VOLUME			3,473

Project Name: Shinglemill Apartments Calculations by: DJD

Project Address: 0 Pond Street, Rockland Calculations date: May 13, 2020

Client:Shinglemill, LLCChecked by:JENLocation:4 First Street, BridgewaterChecked Date:May 14, 2020

STORMWATER MANAGEMENT STANDARD 4 - WATER QUALITY VOLUME (INFILTRATION CHAMBER C)

	DEPTH TO TREAT (IN.)	IMPERVIOUS AREA (SF)	WATER VOLUME (CF)
WATER QUALITY VOLUME (if discharging to an area of high rate of infiltration, or sensitive area)	1	142,644	11,887
NET WATER QUALITY VOLUME			11,887

Project Name: Shinglemill Apartments Calculations by: DJD

Project Address: 0 Pond Street, Rockland Calculations date: May 13, 2020

Client:Shinglemill, LLCChecked by:JENLocation:4 First Street, BridgewaterChecked Date:May 14, 2020

DESIGN STORM (YEAR)	EXISTING VOLUME OF RUNOFF (CF)	PROPOSED VOLUME OF RUNOFF (CF)	REDUCTION IN PEAK RUNOFF
2	125,297	120,105	4.1%
10	249,551	242,335	2.9%
25	355,250	346,204	2.5%
100	580,544	568,215	2.1%

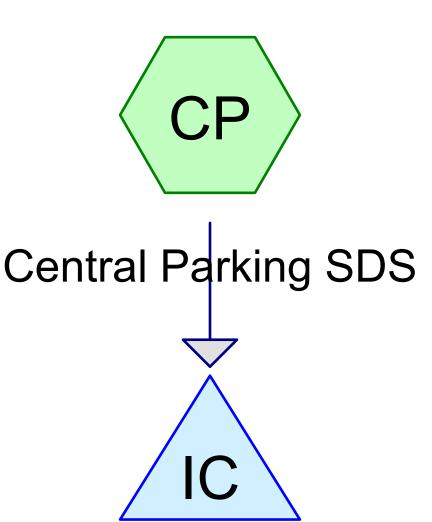
NOTE: PEAK RATES AND VOLUMES SHOWN WERE TAKEN FROM THE EXISTING AND PROPOSED HYDROCAD ANALYSES.

TO RAIN GARDEN A 25 YEAR STORM

			WATER	SHED CHA	RACTE	ERISTICS						PIPE CHARACTERISTICS								FLC	FLOW CHARACTERISTICS					
	LOCATION			L	AND US	SE.	FL	OW TIME		FLO	w					R = hyd	Iraulic radi	us = area/\	wetted perim	neter						Tc
Description	Cover	Increm.	Total_A	С	CA	Total CA	To Inlet	In Pipe	Tc	I	Q	Structure	Invert	Pipe	Size	Length	Area	R	Slope	n	Qf	Vf	Q/Qf	V/Vf	٧	L/V
		(ACRE)	(ACRE)				(MIN)	(MIN)	(MIN)	(IPH)	CFS)				(IN)	(FT)	(SF)	(FT)			(CFS)	(FT/S)			(FT/S)	(MIN)
WS CB-A1	LANDSCAPED IMPERVIOUS	0.030 0.120		0.400 0.850								From: CB-A1	Out:	HDPF	12	11	0.79	0.250	0.005	0.013	2.52	3.21	0.29	0.73	2.35	0.08
	IIVIF EITVIOUS	0.120	0.151		0.114		6.00	NONE	6.00	6.39	0.73	To: DMH-A1	In:	HDFL	12		0.79	0.230	0.003	0.013	2.32	3.21	0.29	0.73	2.55	0.00
WS CB-A2	LANDSCAPED IMPERVIOUS	0.021 0.129		0.400 0.850								From: CB-A2	Out:	HDPE	12	11	0.79	0.250	0.005	0.013	2.52	3.21	0.30	0.74	2.37	0.08
			0.150		0.118		6.00	NONE	6.00	6.39	0.75	To: DMH-A1	In:													
DMH-A1	TO FES-A1					0.232	6.00	0.08	6.08	6.38	1.48	From: DMH-A1	Out:	HDPE	12	41	0.79	0.250	0.005	0.013	2.52	3.21	0.59	0.90	2.88	0.24
												To: FES-A1	In:													

TO RAIN GARDEN B 25 YEAR STORM

			WATERS	HED CHA	RACTE	RISTICS						PIPE CHARACTERISTICS							FLOW CHARACTERIST			s				
	LOCATION			L	AND US	E	FLC	OW TIME		FLO	W		R = hydraulic radius = area/wetted perimeter										Tc			
Description	Cover	Increm. (ACRE)	Total_A (ACRE)	С	CA	Total CA	To Inlet (MIN)	In Pipe (MIN)	Tc (MIN)	I (IPH) (Q CFS)	Structure	Invert	Pipe	Size (IN)	Length (FT)	Area (SF)	R (FT)	Slope	n	Qf (CFS)	Vf (FT/S)	Q/Qf	V/Vf	V (FT/S)	L/V (MIN)
WS CB-B1	LANDSCAPED IMPERVIOUS	0.078 0.294	0.372	0.400 0.850 0.755	0.281		6.00	NONE	6.00	6.39		rom: CB-B1 o: DMH-B1	Out: In:	HDPE	12	12	0.79	0.250	0.005	0.013	2.52	3.21	0.71	0.95	3.04	0.07
WS CB-B2	LANDSCAPED IMPERVIOUS	0.040 0.122	0.161	0.400 0.850 0.739	0.119		6.00	NONE	6.00	6.39		rom: CB-B2 o: DMH-B1	Out: In:	HDPE	12	12	0.79	0.250	0.005	0.013	2.52	3.21	0.30	0.74	2.37	0.08
DMH-B1	TO DMH-B3					0.400	6.00	0.08	6.08	6.37		rom: DMH-B1 o: DMH-B3	Out: In:	HDPE	12	41	0.79	0.250	0.006	0.013	2.76	3.51	0.92	1.02	3.60	0.19
WS CB-B3	LANDSCAPED IMPERVIOUS	0.111 0.094	0.205	0.400 0.850 0.607	0.124		6.00	NONE	6.00	6.39		rom: CB-B3	Out: In:	HDPE	12	40	0.79	0.250	0.020	0.013	5.04	6.42	0.16	0.61	3.93	0.17
DMH-B3	TO DMH-B4					0.525	6.08	0.19	6.27	6.34		rom: DMH-B3	Out: In:	HDPE	18	61	1.77	0.375	0.005	0.013	7.43	4.20	0.45	0.83	3.49	0.29
DMH-B4	TO DMH-B5					0.525	6.27	0.29	6.57	6.29		rom: DMH-B4 o: DMH-B5	Out: In:	HDPE	18	363	1.77	0.375	0.005	0.013	7.43	4.20	0.44	0.83	3.48	1.74
DMH-B5	TO FES-B1					0.525	6.57	1.74	8.31	6.00		rom: DMH-B5	Out: In:	HDPE	18	143	1.77	0.375	0.005	0.013	7.43	4.20	0.42	0.82	3.43	0.69
WS CB-B5	LANDSCAPED IMPERVIOUS	0.047 0.186	0.233	0.400 0.850 0.759	0.177		6.00	NONE	6.00	6.39		rom: CB-B5	Out: In:	HDPE	12	38	0.79	0.250	0.005	0.013	2.52	3.21	0.45	0.83	2.66	0.24
WS CB-B6	LANDSCAPED IMPERVIOUS	0.004 0.032	0.036	0.400 0.850 0.796	0.029		6.00	NONE	6.00	6.39		rom: CB-B6 o: FES-B3	Out: In:	HDPE	12	16	0.79	0.250	0.005	0.013	2.52	3.21	0.07	0.49	1.57	0.17
WS CB-B7	LANDSCAPED IMPERVIOUS	0.010 0.103	0.113	0.400 0.850 0.811	0.091		6.00	NONE	6.00	6.39		rom: CB-B7	Out: In:	HDPE	12	15	0.79	0.250	0.005	0.013	2.52	3.21	0.23	0.69	2.20	0.11
WS CB-B8	LANDSCAPED IMPERVIOUS	0.036 0.134	0.170	0.400 0.850 0.756	0.128		6.00	NONE	6.00	6.39		rom: CB-B8 o: FES-B5	Out: In:	HDPE	12	60	0.79	0.250	0.005	0.013	2.52	3.21	0.33	0.76	2.43	0.41



TO INFILTRATION FACILITY C 25 YEAR STORM

			WATER	SHED CH	ARACTE	RISTICS										PIPE CH	ARACTERIS	STICS					FLC	W CHARA	CTERISTIC	cs
	LOCATION			L	AND US	SE .	FLC	OW TIME		FLOV	1					R = hyd	draulic radi	us = area/\	wetted perin	neter						Tc
Description	Cover	Increm. (ACRE)	Total_A (ACRE)	С	CA	Total CA	To Inlet (MIN)	In Pipe (MIN)	Tc (MIN)	I (IPH) (C	Q :FS)	Structure	Invert	Pipe	Size (IN)	Length (FT)	Area (SF)	R (FT)	Slope	n	Qf (CFS)	Vf (FT/S)	Q/Qf	V/Vf	V (FT/S)	L/V (MIN)
WS CB-C1	LANDSCAPED IMPERVIOUS	0.088 0.379		0.400 0.850 0.765	0.358		6.00	NONE	6.00	6.39		om: CB-C1 : DMH-C2	Out: In:	HDPE	12	23	0.79	0.250	0.005	0.013	2.52	3.21	0.91	1.02	3.26	0.12
WS DCB-C3	LANDSCAPED IMPERVIOUS	0.009 0.137		0.400 0.850 0.824	0.120		6.00	NONE	6.00	6.39		om: DCB-C3 : DMH-C3	Out: In:	HDPE	12	69	0.79	0.250	0.005	0.013	2.52	3.21	0.30	0.74	2.38	0.48
WS DCB-C4	LANDSCAPED IMPERVIOUS	0.017 0.066		0.400 0.850 0.759	0.063		6.00	NONE	6.00	6.39		DCB-C4 : DMH-C3	Out: In:	HDPE	12	109	0.79	0.250	0.005	0.013	2.52	3.21	0.16	0.62	1.97	0.92
DMH-C3	TO DMH-C2					0.183	6.00	0.92	6.92	6.23		DMH-C3 : DMH-C2	Out: In:	HDPE	12	25	0.79	0.250	0.005	0.013	2.52	3.21	0.45	0.83	2.67	0.16
WS CB-C5	LANDSCAPED IMPERVIOUS	0.012 0.086		0.400 0.850 0.794			6.00	NONE	6.00	6.39		om: CB-C5 : DMH-C4	Out: In:	HDPE	12	81	0.79	0.250	0.005	0.013	2.52	3.21	0.20	0.65	2.10	0.64
WS CB-C6	LANDSCAPED IMPERVIOUS	0.008 0.03		0.400 0.850 0.755	0.029		6.00	NONE	6.00	6.39		om: CB-C6 : DMH-C4	Out: In:	HDPE	12	22	0.79	0.250	0.020	0.013	5.04	6.42	0.04	0.40	2.58	0.14
DMH-C4	TO DMH-C2					0.107	6.00	0.64	6.64	6.28		om: DMH-C4 : DMH-C2	Out: In:	HDPE	12	25	0.79	0.250	0.005	0.013	2.52	3.21	0.27	0.71	2.29	0.18
DMH-C2	TO STC-C1					0.648	7.08	0.00	7.08	6.20		om: DMH-C2 : STC-C1	Out: In:	HDPE	18	37	1.77	0.375	0.005	0.013	7.43	4.20	0.54	0.88	3.68	0.17
STC-C1	TO IFC					0.648	7.08	0.17	7.24	6.18		om: STC-C1	Out: In:	HDPE	18	198	1.77	0.375	0.011	0.013	11.02	6.23	0.36	0.78	4.87	0.68

																										$\overline{}$
WS DCB-C7	LANDSCAPED IMPERVIOUS	0.104 0.559		0.400 0.850							F	From: DCB-C7	Out:	HDPE	12	50	0.79	0.250	0.010	0.013	3.56	4.54	0.93	1.02	4.65	0.18
	IVII ERVIOUS	0.000	0.663	0.780).517		6.00	NONE	6.00	6.39	3.30 T	To: STC-C2	In:	HDI E	12	00	0.73	0.200	0.010	0.010	0.00	4.04	0.55	1.02	4.00	0.10
WS DCB-C8	LANDSCAPED	0.017		0.400							F	rom: DCB-C8	Out:													
	IMPERVIOUS	0.421	0.439	0.850 0.832	200		6.00	NONE	6.00	6 20	2.33 T	To: STC-C2	In:	HDPE	12	50	0.79	0.250	0.010	0.013	3.56	4.54	0.65	0.93	4.20	0.20
			0.439	0.032									111.													
STC-C2	TO DMH-C5				0.	0.882	6.00	0.20	6.20	6.35	5.61 F	rom: STC-C2	Out:	HDPE	18	24	1.77	0.375	0.010	0.013	10.50	5.94	0.53	0.87	5.19	0.08
											Т	Γο: DMH-C5	In:	TIDI E	10	24	1.77	0.070	0.010	0.010	10.00	0.54	0.00	0.07	0.15	0.00
DMH-C5	TO IFC				0.).882	6.20	0.08	6.28	6.34	5.59 F	From: DMH-C5	Out:													
														HDPE	18	71	1.77	0.375	0.020	0.013	14.86	8.41	0.38	0.79	6.63	0.18
												Γο: IFC	In:													
WS STC-C3	LANDSCAPED	0.036		0.400							F	From: STC-C3	Out:													
	IMPERVIOUS	0.295	0.004	0.850				NONE		0.00				HDPE	12	38	0.79	0.250	0.036	0.013	6.76	8.61	0.25	0.70	6.03	0.11
I			0.331	0.801	1.265		6.00	NONE	6.00	6.39	1.69 T	Γο: FES-B5	In:													

Infiltration Facility C

3395.1 - 0 Pond Street - SDS

Prepared by Microsoft
HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

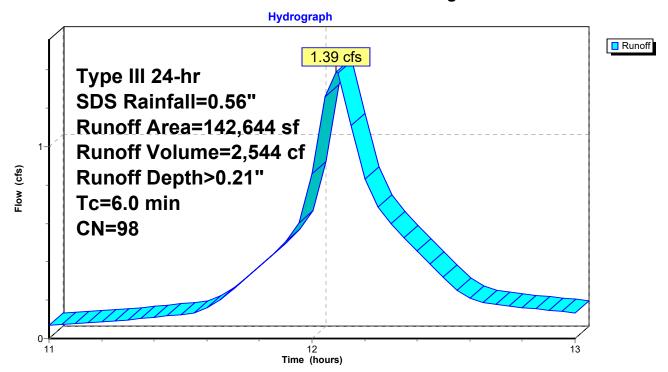
Printed 5/14/2020 Page 2

Area Listing (selected nodes)

	Area	CN	Description
	(sq-ft)		(subcatchment-numbers)
	84,454	98	Paved parking, HSG D (CP)
	58,190	98	Roofs, HSG D (CP)
•	142,644	98	TOTAL AREA

HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC

Page 3


Summary for Subcatchment CP: Central Parking SDS

Runoff = 1.39 cfs @ 12.09 hrs, Volume= 2,544 cf, Depth> 0.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 11.00-13.00 hrs, dt= 0.05 hrs Type III 24-hr SDS Rainfall=0.56"

_	Α	rea (sf)	CN	Description		
		58,190	98	Roofs, HSG	i D	
_		84,454	98	Paved park	ing, HSG D)
	1	42,644	98	Weighted A	verage	
	142,644 100.00% Impervious A				pervious A	\rea
	Тс	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	6.0					Direct Entry,

Subcatchment CP: Central Parking SDS

Prepared by Microsoft HydroCAD® 10.00-20 s/n 01046 © 2017 HydroCAD Software Solutions LLC Printed 5/14/2020

Page 4

Summary for Pond IC: Infiltration Facility C

Inflow Area = 142,644 sf,100.00% Impervious, Inflow Depth > 0.21" for SDS event

Inflow = 1.39 cfs @ 12.09 hrs, Volume= 2,544 cf

Outflow = 1.04 cfs @ 12.05 hrs, Volume= 2,534 cf, Atten= 25%, Lag= 0.0 min

Discarded = 1.04 cfs @ 12.05 hrs, Volume= 2,534 cf

Routing by Stor-Ind method, Time Span= 11.00-13.00 hrs, dt= 0.05 hrs Peak Elev= 139.08' @ 12.16 hrs Surf.Area= 5,439 sf Storage= 173 cf

Plug-Flow detention time= 1.7 min calculated for 2,532 cf (100% of inflow)

Center-of-Mass det. time= 1.3 min (728.0 - 726.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	139.00'	4,509 cf	74.00'W x 73.50'L x 3.54'H Field A
			19,263 cf Overall - 7,991 cf Embedded = 11,272 cf x 40.0% Voids
#2A	139.50'	7,991 cf	Cultec R-330XLHD x 150 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 15 rows
	•	40 500 .5	Total Assillable Otomore

12,500 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	139 00'	8.270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=1.04 cfs @ 12.05 hrs HW=139.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.04 cfs)

Page 5

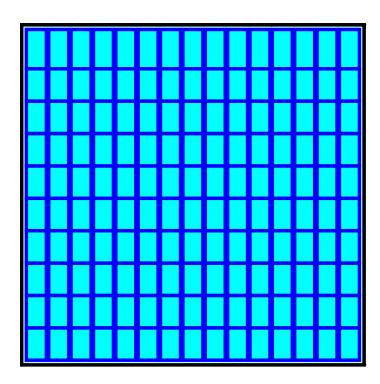
Pond IC: Infiltration Facility C - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 15 rows

52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

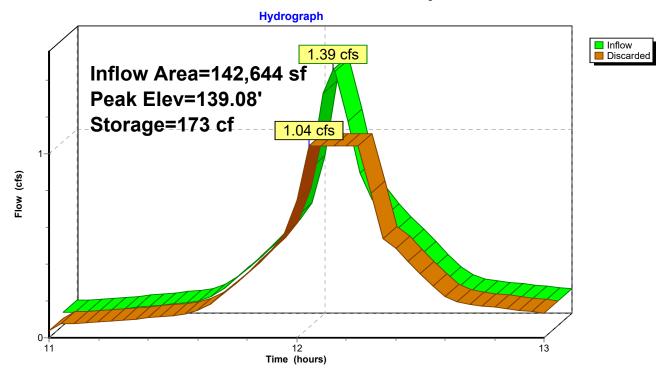
10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +12.0" End Stone x 2 = 73.50' Base Length


15 Rows x 52.0" Wide + 6.0" Spacing x 14 + 12.0" Side Stone x 2 = 74.00' Base Width 6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

150 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 15 Rows = 7,991.2 cf Chamber Storage

19,263.1 cf Field - 7,991.2 cf Chambers = 11,271.9 cf Stone x 40.0% Voids = 4,508.8 cf Stone Storage

Chamber Storage + Stone Storage = 12,500.0 cf = 0.287 af Overall Storage Efficiency = 64.9% Overall System Size = 73.50' x 74.00' x 3.54'


150 Chambers 713.4 cy Field 417.5 cy Stone

Page 6

Pond IC: Infiltration Facility C

APPENDIX D

APPENDIX D												
LONG TERM POLLUTION PREVENTION PLAN – REQUIRED BY STANDARDS 4-6												

LONG TERM POLLUTION PREVENTION PLAN

To keep the Stormwater Management System (SMS) functioning properly and to ensure that the stormwater Total Suspended Solids (TSS) are reduced, a long term pollution prevention is required. Shinglemill, LLC, the owner/operator of the facility, is responsible for the adherence to this long term plan. The following is a guideline of the specific requirements of the plan to maintain the long term viability of the stormwater management system.

The Stormwater Pollution Prevention Plan for the site addresses many of the items in the Long Term Pollution Prevention Plan.

Good Housekeeping Practices

Employees shall be instructed in the importance of not spilling fluids and chemicals such as oil, antifreeze, etc. onto the bare ground. All areas exposed to the weather shall be kept clean

Provisions for Storing Materials and Waste Products Inside or Under Cover

Liquid waste products shall be captured when draining from vehicles, and stored in sealed containers under cover until they are disposed of. Waste products shall be disposed of in a legal manner, at a state licensed recycling center or landfill.

Requirements for routine inspections and maintenance of stormwater BMPs;

BMPs shall be inspected on a monthly basis. BMPs shall be maintained per the Operations and Maintenance Plan.

Spill prevention and response plans;

First responders	Phone Numbers
Rockland Fire Department	911 if emergency or (781) 878-2123
Rockland Police Department	911 if emergency or (781) 871-3890
 Mass Department of Environmental Protection 	
Emergency Response	1-888-304-1133

Requirements for storage and use of fertilizers, herbicides, and pesticides;

Fertilizers shall not be used within 25 feet of the wetland resource areas. Excess fertilizers shall be swept up from all impervious surfaces and not allowed to run into the drainage system.

All fertilizer, herbicides, and pesticides shall be stored at least 100 feet away from the wetland line. If stored on site, these materials should be kept in a wrapped or sealed container, and kept under cover out of the rain and snow.

Provisions for solid waste management;

Solid waste shall be collected at a minimum of once per week and disposed of in an appropriate dumpster or garbage truck. Waste shall be disposed of in a legal manner, at a state licensed recycling center or landfill.

Winter Road Salt and/or Sand Use and Storage restrictions

Road salt shall not be used on this site.

Street sweeping schedules;

Street Sweeping shall be performed on paved surfaces no less than once per year, preferably in the spring months.

Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;

Oil booms shall be kept on site in a readily accessible area in the event of an oil spill. If an oil spill occurs, the booms shall be placed and secured at the overflow spillway and in front of the entrance to the Stormceptors.

Routine Inspections and Maintenance of SMS BMP's

Routine inspections and maintenance shall be performed in accordance with the Operations and Maintenance Plan

APPENDIX E

OPERATION AND MAINTENANCE PLAN - REQUIRED BY STANDARD 9

OPERATION AND MAINTENANCE PLAN

To keep the Stormwater Management System (SMS) functioning properly and to ensure that the Total Suspended Solids (TSS) are reduced, periodic maintenance is required. The owner/operator of the facility is responsible for the periodic maintenance requirements of the SMS. Shinglemill, LLC is the owner and will be the party responsible for the maintenance of the SMS. The following is a guideline of the specific maintenance schedules and tasks required to keep the SMS functioning properly.

- Deep Sump Catch Basins
 - General Maintenance
 - Remove any accumulated leaves from the grates during the fall and spring.
 - Quarterly Maintenance
 - Inspect sumps for accumulated sediment. If sediment has reached a depth of eighteen inches (18"), remove via clamshell bucket or vacuum truck.
 - Annual Maintenance
 - Inspect hood to ensure that it is properly secured.
 - Remove accumulated sediment via clamshell bucket or vacuum truck.
- Proprietary Separators
 - o General Maintenance
 - All operation and maintenance to follow Proprietary Separator Manufacturer's guideline.
 - Sediment to be removed once it reaches approximately 15% of unit storage capacity. Approximate Depths for Stormceptors on site:
 - Stormceptor 450i 9"
 - Stormceptor 900 8"
 - Units to be cleaned immediately after an oil, fuel, or chemical spill.
 - Quarterly Maintenance
 - Inspect structure for accumulated sediment and oil. Remove sediment if sediment has reached maximum depth. If oil is present, pump off oil layer.
 - Annual Maintenance
 - Inspect structure for accumulated sediment and oil. Remove sediment if sediment has reached maximum depth. If oil is present, pump off oil layer.
- Rain Gardens
 - General Maintenance
 - Inspect and remove trash on a monthly basis.
 - Mow grasses when between 3" to 6", 2 to 12 times annually.
 - Annual Maintenance
 - Inspect and repair voids within the mulched areas.
 - Apply fertilizers as recommended by the manufacturer for each plant species within the garden.
 - Remove and prune dead vegetation as necessary. Replant vegetation of similar species that was removed during maintenance activities.
- Infiltration Chambers
 - General Maintenance
 - Inspect subsurface infiltration facilities twice a year.
 - Remove any debris that may clog the system via vacuum truck.

- Plunge Pools/Splash Pads
 - o General Maintenance
 - During the fall and the spring remove any accumulated leaves or large debris.
 - o Annual Maintenance
 - Check for signs of erosion and repair as needed.
 - Remove any branches, trash or other large debris that could interfere with the proper operation of the inlet or outlet of the basin. Remove any accumulated sediment, by the use of hand tools (shovels, rakes, wheelbarrows, etc.) when it exceeds three-inches (3") but not less than annually.

SHINGLEMILL, LLC SHINGLEMILL 0 POND STREET, ROCKLAND, MASSACHUSETTS STORMWATER MANAGEMENT SYSTEM OPERATION & MAINTENANCE LOG DATE TIME MAINTENANCE ACTIVITY MAINTENANCE PERFORMED, OBSERVATIONS

APPENDIX F

SOIL LOGS

	Job No.:	3395.1		Soi		r: Damien Dmitruk			
	Client:				Witness:				
Site	e Location:	0 Pond St., Rockland, N	MA		Excavator:	Iaria Broth	ners - Vinny		
	Land Use:	Vacant lot			Date:	October 2	, 2019		
Parer	nt Material:				Weather:	Cloudy, 75	0		
		r Resource Conditions:		Above:		X			
	water	Resource Conditions.	rvoimai.	TIDOVC.	_ Delow.		-		
ГР #	3								
Depth	Horizon	Texture	Color	Comments	Infiltrat	ion Test	Groun	dwater	
0-24	Fill			Change in redox color at 11"	Depth		Mottling	4"	
24-40	Ab	Loam	5Y 2.5/1		0-15 Min.		Mottling	4	
40-58	C1	Sand	2.5Y 5/1	5% Gravel, 5% Cob./Stones	15-30 Min.		Weeping		
58-90	C2	Coarse Sand	2.5Y 5/1	10% Gravel, 10% Cob./Stones	30-45 Min.		weeping		
					45-60 Min.		Standing	40"	
					60-75 Min.		Standing	40	
					Rate	•	"/hr		
ГР #	4								
Depth	Horizon	Texture	Color	Comments	Infiltrati	ion Test	Groun	dwater	
0-24	Fill				Depth		Mottling	31"	
24-30	Ab	Coarse Sand	10YR 4/1		0-15 Min.		Wiottinig	31	
30-35	Bw	Coarse Sand	10YR 5/6		15-30 Min.		Weeping		
35-79	С	Coarse Sand	10YR 4/4	10% Gravel, 10% Cob./Stones	30-45 Min.		weeping		
					45-60 Min.		Standing	40"	
					60-75 Min.		6		
ГР #	5				Rate		"/hr		
Depth	Horizon	Texture	Color	Comments	Infiltrat	ion Test	Groun	dwater	
0-2	О				Depth		3.61"	6 11	
2-4	Α	Loamy Sand	10YR 4/3	10% Gravel, 10% Cob./Stones	0-15 Min.		Mottling	6"	
4-13	Bw	Sand	2.5Y 5/4	10% Gravel, 10% Cob./Stones, heavier mottling at 26"	15-30 Min.		Weeping	25"	
13-72	С	Sand	2.5Y 6/3	10% Gravel, 10% Cob./Stones	30-45 Min.				
					45-60 Min.		Standing	36"	
					60-75 Min.		Stariding	30	
ГР #	6				Rate		"/hr		
Depth	Horizon	Texture	Color	Comments	Infiltrat	ion Test	Groun	dwater	
0-15	Fill				Depth		Mottling	10"	
15-23	Ab	Loamy Sand	10YR 2/1	10% Gravel, 10% Cob./Stones	0-15 Min.		mouning	10	
23-29	Bw	Sand	10YR 5/6	10% Gravel, 10% Cob./Stones	15-30 Min.]		
29-105	С	Sand	2.5Y 5/1	10% Gravel, 10% Cob./Stones, Heavier mottling at 55"	30-45 Min.		Weeping	28"	
					45-60 Min.		Standing	48"	
					60-75 Min.		Januing	10	
					Rate		"/hr		

TP#	7						
Depth	Horizon	Texture	Color	Comments	Infiltration Test	Groun	dwater
0-113	Fill			60" to organic fill, roots at 86"	Depth	Mottling	
113-123	Ab	Loamy Sand	10YR 2/1		0-15 Min.	Wiottillig	
123-131	Cg	Sand	5GY 5/2	10% Gravel, 5% Cob./Stones	15-30 Min.	Weeping	54'
					30-45 Min.	weeping	34
					45-60 Min.	Standing	123
					60-75 Min.	Standing	123
ГР #	8				Rate	"/hr	
Depth	Horizon	Texture	Color	Comments	Infiltration Test	Groun	dwater
0-3	A	Sand	10YR 3/1	30% Gravel	Donth	+ -	
	t	Sand	10YR 3/1 10YR 4/4	20% Gravel, 30% Cob./Stones	Depth 0-15 Min.	Mottling	47'
3-6 6-95	Bw C1	Coarse Sand	2.5Y 5/4	20% Gravel, 30% Cob./Stones	0-15 Min. 15-30 Min.	+ +	
0-93	CI	Coarse Sand	2.31 3/4	2070 Graver, 5070 COD./ Stories	<u> </u>	Weeping	
					30-45 Min.		
					45-60 Min.	Standing	59'
					60-75 Min.	Ü	
ГР #	10				Rate	"/hr	
Depth	Horizon	Texture	Color	Comments	Infiltration Test	Groun	dwatei
0-31	Fill			20% Gravel, 30% Cob./Stones	Depth	3.612	451
31-100	C1	Sand	2.5Y 5/2	10% Gravel, 10% Cob./Stones	0-15 Min.	- Mottling	45'
			,		15-30 Min.		
					30-45 Min.	Weeping	
					45-60 Min.		
					60-75 Min.	Standing	59'
					Rate	"/hr	
TP #	12			T	_	,	
Depth	Horizon	Texture	Color	Comments	Infiltration Test	Groun	dwate
0-27	Fill				Depth	Mottling	42'
27-29	Ab	Loamy Sand			0-15 Min.	111Ottillig	74
29-42	Bw	Loamy Sand	10YR 5/6	10% Gravel, 10% Cob./Stones	15-30 Min.	Weeping	84'
42-56	С	Sand	10YR 4/2	10% Gravel, 10% Cob./Stones	30-45 Min.	weeping	- 04
56-100	2C	Coarse Sand	10YR 6/1	10% Gravel, 10% Cob./Stones	45-60 Min.	C+3*	90'
					60-75 Min.	- Standing	90
TP #	13				Rate	"/hr	
Depth	Horizon	Texture	Color	Comments	Infiltration Test	Groun	dwater
0-10	Fill				Depth	+ 1	
10-17	Ab	Fine Sand	10YR 2/1	Heavy organic	0-15 Min.	Mottling	28'
17-31	Bw	Sand	10YR 5/8	, ,	15-30 Min.		
31-76	C1	Coarse Sand	2.5Y 4/4		30-45 Min.	Weeping	48'
76-92	C2	Coarse Sand	2.5Y 5/1	10% Gravel, 30% Cob./Stones,	45-60 Min.	0. "	48'
7/6-92	C2	Coarse Sand	2.5Y 5/1	10% Small Boulders	45-60 Min.	Standing	4

Rate "/hr

60-75 Min.

TP # 14

Depth	Horizon	Texture	Color	Comments	Infiltrati	Infiltration Test		ıdwater
0-36	Fill				Depth		Mottling	40"
36-41	Ab	Sandy Loam	10YR 2/1		0-15 Min.		Motting	40
41-50	Bw	Loamy Sand	10YR 5/6		15-30 Min.		Weeping	
50-117	С	Medium Sand	2.5Y 4/4	20% Gravel, 5% Cob./Stones	30-45 Min.		weeping	
					45-60 Min.		Standing	56"
					60-75 Min.		Standing	50

Rate "/hr

	Job No.:	3395.1		Se	Soil Evaluator: Damien Dmitruk						
	Client:				Witness:						
Sit	e Location:	0 Pond St., Rockland, M			Excavator:	Iaria Broth	ners - Vinny	r			
		¥7. 1			Date:	October 3,	, 2019				
Pare	nt Material:	-				Cloudy, 55					
		r Resource Conditions:		Above:		X					
	w atc.	r Resource Conditions.	rvoimai.	nbove.	_ Delow.	A	-				
TP#	1										
Depth	Horizon	Texture	Color	Comments	Infiltrati	ion Test	Groun	ndwater			
0-100	Fill			Scrap, fill until water surface 75", sand @ bottom of pit	Depth		Mottling				
					0-15 Min.						
					15-30 Min.		Weeping				
	<u> </u>				30-45 Min.		weeping				
					45-60 Min.		Standing	44"			
					60-75 Min.		Standing	77			
					Rate		"/hr				
TP#	2										
Depth	Horizon	Texture	Color	Comments	Infiltrati	ion Test	n Test Groun				
0-70	Fill				Depth		Mottling	18"			
70-97	С	Sand	<u> </u>	10% Gravel, 10% Cob./Stone	0-15 Min.	<u> </u>	1.10ttaling				
			 		15-30 Min.		Weeping				
			 		30-45 Min.						
	-		 	 	45-60 Min.		Standing	45"			
					60-75 Min.						
TP#	9				Rate		"/hr				
Depth	Horizon	Texture	Color	Comments	Infiltrati	ion Test	Groun	ndwater			
0-22	Fill				Depth		Mottling	27"			
22-60	C1	Sand		Denser mottling @32"	0-15 Min.		Motung	21			
60-63	C2	Sand		10% Gravel, 10% Stone, Black	15-30 Min.		Weeping				
63-90	C3	Sand	5YR 4/6	10% Gravel, 10% Cob./Stone	30-45 Min.		weeping				
	<u> </u>		<u> </u>		45-60 Min.	<u> </u>	Standing	44"			
					60-75 Min.		8				
					Rate		"/hr				
TP#	11										
Depth	Horizon	Texture	Color	Comments	Infiltrati	ion Test	Groun	ndwater			
0-18	Fill				Depth		Mottling	36"			
18-33	C1	Coarse Sand	10YR 6/6	10% Gravel, 10% Cob./Stone	0-15 Min.		Motting	30			
33-67	C2	Fine Sand	2.5Y 6/2	10% Gravel, 10% Cob./Stone	15-30 Min.		Weeping				
67-90	C3	Coarse Sand	5Y 5/3	10% Gravel, 10% Cob./Stone	30-45 Min.		,, cep.ii.g				
					45-60 Min.		Standing	53"			
i	1		i		60-75 Min		58				

Rate

TP # 15

Depth	Horizon	Texture	Color	Comments	Infiltrati	on Test	Grou	ndwater
0-54	Fill	Coarse Loamy Sand			Depth		Mottling	21"
54-69	Ab	Silt loam	10YR 2/1		0-15 Min.		Motung	∠1
69-99	C1	Coarse Sand	5Y 4/2	20% Gravel, 20% Cob./Stone	15-30 Min.		Wagaing	48"
					30-45 Min.		Weeping	40
					45-60 Min.		Standing	87"
					60-75 Min.		Standing	0/

Rate "/hr

APPENDIX G
ILLICIT DISCHARGE COMPLIANCE STATEMENT- REQUIRED BY STANDARD 10

Illicit Discharge Compliance Statement

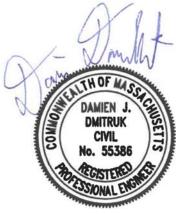
Responsibility:

The Owner is responsible for ultimate compliance with all provisions of the Massachusetts Stormwater Management Policy, the USEPA NPDES Construction General Permit and responsible for identifying and eliminating illicit discharges (as defined by the USEPA).

OWNER NAME: Shinglemill, LLC

ADDRESS: 4 First Street

Bridgewater, MA 02324


TEL. NUMBER: (508) 697-3191

Engineer's Compliance Statement:

To the best of my knowledge, the attached plans, computations and specifications meet the requirements of Standard 10 of the Massachusetts Stormwater Handbook regarding illicit discharges to the stormwater management system and that no detectable illicit discharges exist on the site. All documents and attachments were prepared under my direction and qualified personnel properly gathered and evaluated the information submitted, to the best of my knowledge.

Included with this statement are site plans, drawn to scale, that identify the location of systems for conveying stormwater on the site and show that these systems do not allow the entry of any illicit discharges into the stormwater management system. The plans also show any systems for conveying wastewater and/or groundwater on the site and show that there are no connections between the stormwater and wastewater systems.

For a redevelopment project (if applicable), all actions taken to identify and remove illicit discharges, including without limitation, visual screening, dye or smoke testing, and the removal of any sources of illicit discharges to the stormwater management system are documented and included with this statement.

Damien J. Dmitruk, P.E. Civil Engineer

APPENDIX H

STORMCEPTOR SIZING REPORTS RINKER STORMCEPTOR OWNER'S MANUAL

Detailed Stormceptor Sizing Report – STC-C1

Project Information & Location						
Project Name Shinglemill Apartments		Project Number	3395.1			
City Rockland		State/ Province	Massachusetts			
Country United States of America		Date	4/7/2020			
Designer Information		EOR Information (optional)				
Name Coneco Coneco		Name				
Company Coneco Engineers & Scientists		Company				
Phone # 508-697-3191		Phone #				
Email	Stormceptor@coneco.com	Email				

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	STC-C1	
Recommended Stormceptor Model	STC 450i	
Target TSS Removal (%)	80.0	
TSS Removal (%) Provided	81	
PSD	Fine Distribution	
Rainfall Station	BLUE HILL	

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary				
Stormceptor Model	% TSS Removal Provided			
STC 450i	81			
STC 900	88			
STC 1200	88			
STC 1800	88			
STC 2400	90			
STC 3600	91			
STC 4800	93			
STC 6000	93			
STC 7200	94			
STC 11000	96			
STC 13000	96			
STC 16000	97			

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station					
State/Province	State/Province Massachusetts Total Number of Rainfall Events				
Rainfall Station Name	BLUE HILL	Total Rainfall (in)	2849.7		
Station ID # 0736		Average Annual Rainfall (in)	49.1		
Coordinates	42°12'44"N, 71°6'53"W	Total Evaporation (in)	215.2		
Elevation (ft) 630		Total Infiltration (in)	450.4		
Years of Rainfall Data	58	Total Rainfall that is Runoff (in)	2184.1		

Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Discharge (cfs)

Drainage Area				
Total Area (acres)	0.83			
Imperviousness %	83.9			
Water Quality Objective	9			
TSS Removal (%)	80.0			
Runoff Volume Capture (%)				
Oil Spill Capture Volume (Gal)				
Peak Conveyed Flow Rate (CFS)				
Water Quality Flow Rate (CFS)				

0.000 0.000				
Up Stream Flow Diversion				
Max. Flow to Stormce	Max. Flow to Stormceptor (cfs)			
Desi	gn Details			
Stormceptor Inlet Inve	rt Elev (ft)			
Stormceptor Outlet Inve	ert Elev (ft)			
Stormceptor Rim E				
Normal Water Level Ele	evation (ft)			
Pipe Diameter (12			
Pipe Materia	HDPE - plastic			
Multiple Inlets (No			
Grate Inlet (Y/I	N)	No		

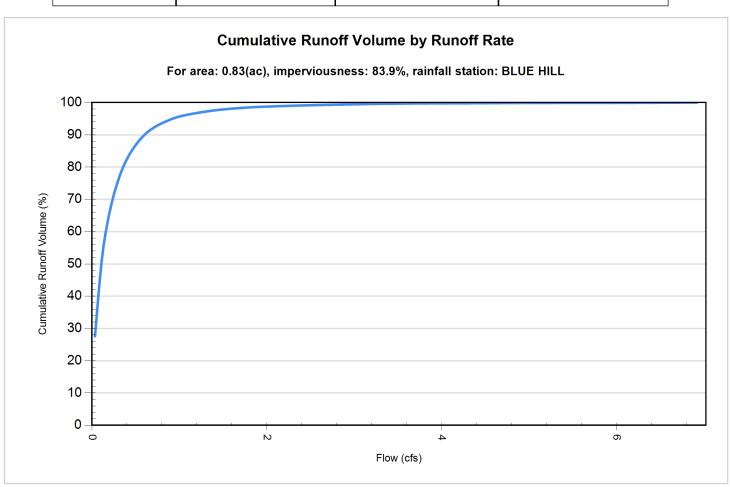
Up Stream Storage

Storage (ac-ft)

Particle Size Distribution (PSD)

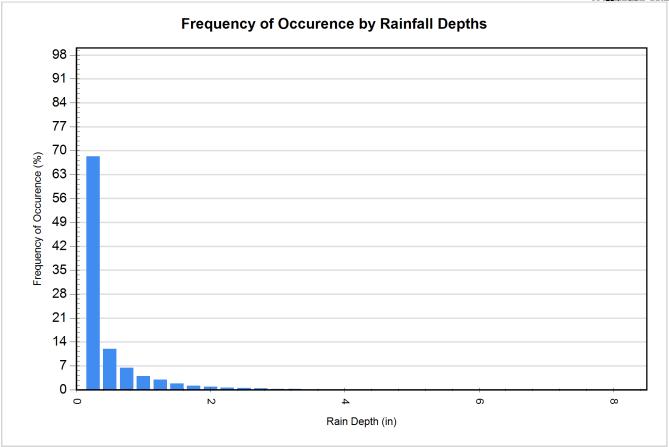
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

Fine Distribution					
Particle Diameter (microns)	Distribution %	Specific Gravity			
20.0	20.0	1.30			
60.0	20.0	1.80			
150.0	20.0	2.20			
400.0	20.0	2.65			
2000.0	20.0	2.65			



Site Name		STC-C1			
Site Details					
Drainage Area		Infiltration Parameters			
Total Area (acres)	Total Area (acres) 0.83		infiltration		
Imperviousness % 83.9		Max. Infiltration Rate (in/hr)	2.44		
Surface Characteristics	5	Min. Infiltration Rate (in/hr)	0.4		
Width (ft)	380.00	Decay Rate (1/sec)	0.00055		
Slope %	2	Regeneration Rate (1/sec)	0.01		
Impervious Depression Storage (in)	0.02	Evaporation			
Pervious Depression Storage (in) 0.2		Daily Evaporation Rate (in/day)	0.1		
Impervious Manning's n	0.015	Dry Weather Flow			
Pervious Manning's n 0.25		Dry Weather Flow (cfs)	0		
Maintenance Frequency	y	Winter Months			
Maintenance Frequency (months) >	12	Winter Infiltration	0		
	TSS Loading	y Parameters			
TSS Loading Function					
Buildup/Wash-off Parame	eters	TSS Availability Parameters			
Target Event Mean Conc. (EMC) mg/L		Availability Constant A			
Exponential Buildup Power	Exponential Buildup Power				
Exponential Washoff Exponent		Availability Exponent C			
		Min. Particle Size Affected by Availability (micron)			

Cumulative Runoff Volume by Runoff Rate						
Runoff Rate (cfs)	Runoff Volume (ft³)	Volume Over (ft³)	Cumulative Runoff Volume (%)			
0.035	1885448	4941942	27.6			
0.141	3887958	2938860	57.0			
0.318	5275823	1551389	77.3			
0.565	6072165	753617	89.0			
0.883	6456987	368718	94.6			
1.271	6630169	195268	97.1			
1.730	6714597	110836	98.4			
2.260	6759948	65437	99.0			
2.860	6786041	39340	99.4			
3.531	6802049	23305	99.7			
4.273	6811700	13652	99.8			
5.085	6817526	7819	99.9			
5.968	6821152	4192	99.9			
6.922	6822827	2517	100.0			



Rainfall Event Analysis				
Rainfall Depth (in)	No. of Events	Percentage of Total Events (%)	Total Volume (in)	Percentage of Annual Volume (%)
0.25	5908	68.3	386	13.6
0.50	1039	12.0	381	13.4
0.75	555	6.4	344	12.1
1.00	349	4.0	301	10.6
1.25	262	3.0	292	10.3
1.50	154	1.8	211	7.4
1.75	104	1.2	168	5.9
2.00	75	0.9	140	4.9
2.25	48	0.6	102	3.6
2.50	43	0.5	102	3.6
2.75	33	0.4	87	3.0
3.00	17	0.2	49	1.7
3.25	18	0.2	56	2.0
3.50	8	0.1	27	0.9
3.75	7	0.1	25	0.9
4.00	4	0.0	15	0.5
4.25	1	0.0	4	0.1
4.50	4	0.0	18	0.6
4.75	3	0.0	14	0.5
5.00	1	0.0	5	0.2
5.25	1	0.0	5	0.2
5.50	4	0.0	21	0.7
5.75	2	0.0	11	0.4
6.00	4	0.0	23	0.8
6.25	0	0.0	0	0.0
6.50	0	0.0	0	0.0
6.75	1	0.0	7	0.2
7.00	1	0.0	7	0.2
7.25	2	0.0	14	0.5
7.50	0	0.0	0	0.0
7.75	1	0.0	8	0.3
8.00	1	0.0	8	0.3
8.25	0	0.0	0	0.0
8.25	2	0.0	17	0.6

For Stormceptor Specifications and Drawings Please Visit: https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

Detailed Stormceptor Sizing Report – STC-C2

Project Information & Location			
Project Name	Shinglemill Apartments	Project Number	3395.1
City	Rockland	State/ Province	Massachusetts
Country	United States of America	Date 4/7/2020	
Designer Information		EOR Information (optional)	
Name	Coneco Coneco	Name	
Company	Coneco Engineers & Scientists	Company	
Phone #	508-697-3191	Phone #	
Email	Stormceptor@coneco.com	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	STC-C2	
Recommended Stormceptor Model	STC 900	
Target TSS Removal (%)	80.0	
TSS Removal (%) Provided	85	
PSD	Fine Distribution	
Rainfall Station	BLUE HILL	

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	78		
STC 900	85		
STC 1200	85		
STC 1800	85		
STC 2400	88		
STC 3600	89		
STC 4800	91		
STC 6000	91		
STC 7200	93		
STC 11000	95		
STC 13000	95		
STC 16000	96		

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station			
State/Province	Massachusetts	Total Number of Rainfall Events	8652
Rainfall Station Name	BLUE HILL	Total Rainfall (in)	2849.7
Station ID #	0736	Average Annual Rainfall (in)	49.1
Coordinates	42°12'44"N, 71°6'53"W	Total Evaporation (in)	230.8
Elevation (ft)	630	Total Infiltration (in)	307.4
Years of Rainfall Data	58	Total Rainfall that is Runoff (in)	2311.5

Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Discharge (cfs)

Drainage Area			
Total Area (acres)	1.10		
Imperviousness %	89.0		
Water Quality Objective			
TSS Removal (%)	80.0		
Runoff Volume Capture (%)			
Oil Spill Capture Volume (Gal)			
Peak Conveyed Flow Rate (CFS)			
Water Quality Flow Rate (CFS)			

0.000	0.000		
Up Stream Flow Diversion			
Max. Flow to Stormceptor (cfs)			
Design Details			
Stormceptor Inlet Inve			
Stormceptor Outlet Inve			
Stormceptor Rim E			
Normal Water Level Ele			
Pipe Diameter (18		
Pipe Materia	HDPE - plastic		
Multiple Inlets (Yes		
Grate Inlet (Y/I	No		

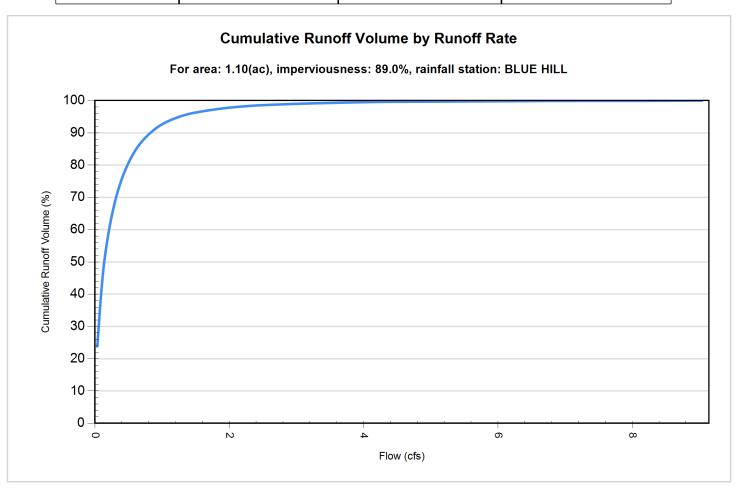
Up Stream Storage

Storage (ac-ft)

Particle Size Distribution (PSD)

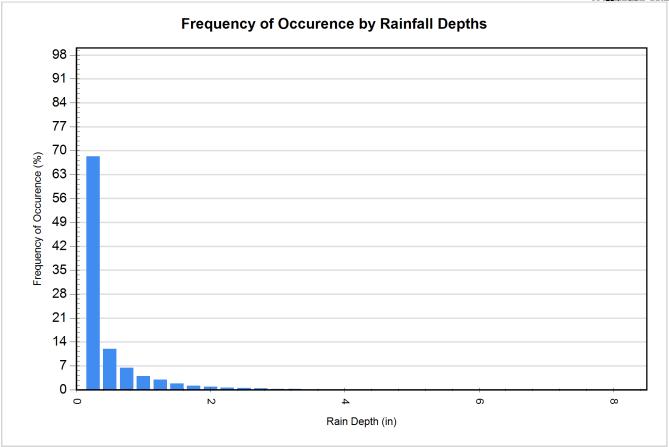
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

Fine Distribution			
Particle Diameter (microns)	Distribution %	Specific Gravity	
20.0	20.0	1.30	
60.0	20.0	1.80	
150.0	20.0	2.20	
400.0	20.0	2.65	
2000.0	20.0	2.65	



Site Name		STC-C2		
Site Details				
Drainage Area		Infiltration Parameters		
Total Area (acres) 1.10		Horton's equation is used to estimate	infiltration	
Imperviousness %	89.0	Max. Infiltration Rate (in/hr)		
Surface Characteristics	5	Min. Infiltration Rate (in/hr)	0.4	
Width (ft)	438.00	Decay Rate (1/sec)	0.00055	
Slope %	2	Regeneration Rate (1/sec)	0.01	
Impervious Depression Storage (in) 0.02		Evaporation	Evaporation	
Pervious Depression Storage (in)	0.2	Daily Evaporation Rate (in/day)	0.1	
Impervious Manning's n	0.015	Dry Weather Flow		
Pervious Manning's n	0.25	Dry Weather Flow (cfs)		
Maintenance Frequency		Winter Months		
Maintenance Frequency (months) > 12		Winter Infiltration	0	
TSS Loading Parameters				
TSS Loading Function				
Buildup/Wash-off Parameters		TSS Availability Paramete	ers	
Target Event Mean Conc. (EMC) mg/L		Availability Constant A		
Exponential Buildup Power		Availability Factor B		
Exponential Washoff Exponent		Availability Exponent C		
		Min. Particle Size Affected by Availability (micron)		

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (cfs)	Runoff Volume (ft³)	Volume Over (ft³)	Cumulative Runoff Volume (%)	
0.035	2271913	7281189	23.8	
0.141	4814681	4737636	50.4	
0.318	6700865	2851024	70.2	
0.565	7952853	1596484	83.3	
0.883	8689224	860204	91.0	
1.271	9076646	472050	95.1	
1.730	9275583	273146	97.1	
2.260	9383370	165247	98.3	
2.860	9445046	103572	98.9	
3.531	9482750	65824	99.3	
4.273	9506354	42222	99.6	
5.085	9522504	26074	99.7	
5.968	9532160	16419	99.8	
6.922	9538497	10076	99.9	
7.946	9542745	5823	99.9	
9.041	9544973	3594	100.0	



Rainfall Event Analysis				
Rainfall Depth (in)	No. of Events	Percentage of Total Events (%)	Total Volume (in)	Percentage of Annual Volume (%)
0.25	5908	68.3	386	13.6
0.50	1039	12.0	381	13.4
0.75	555	6.4	344	12.1
1.00	349	4.0	301	10.6
1.25	262	3.0	292	10.3
1.50	154	1.8	211	7.4
1.75	104	1.2	168	5.9
2.00	75	0.9	140	4.9
2.25	48	0.6	102	3.6
2.50	43	0.5	102	3.6
2.75	33	0.4	87	3.0
3.00	17	0.2	49	1.7
3.25	18	0.2	56	2.0
3.50	8	0.1	27	0.9
3.75	7	0.1	25	0.9
4.00	4	0.0	15	0.5
4.25	1	0.0	4	0.1
4.50	4	0.0	18	0.6
4.75	3	0.0	14	0.5
5.00	1	0.0	5	0.2
5.25	1	0.0	5	0.2
5.50	4	0.0	21	0.7
5.75	2	0.0	11	0.4
6.00	4	0.0	23	0.8
6.25	0	0.0	0	0.0
6.50	0	0.0	0	0.0
6.75	1	0.0	7	0.2
7.00	1	0.0	7	0.2
7.25	2	0.0	14	0.5
7.50	0	0.0	0	0.0
7.75	1	0.0	8	0.3
8.00	1	0.0	8	0.3
8.25	0	0.0	0	0.0
8.25	2	0.0	17	0.6

For Stormceptor Specifications and Drawings Please Visit: https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

Detailed Stormceptor Sizing Report – STC-C3

Project Information & Location				
Project Name	Shinglemill Apartments	Project Number	3395.1	
City	Rockland State/ Province		Massachusetts	
Country	United States of America Date 4/7/2020		4/7/2020	
Designer Information		EOR Information (o	ptional)	
Name	Coneco Coneco	Name		
Company	Coneco Engineers & Scientists	Company		
Phone #	508-697-3191	Phone #		
Email	Stormceptor@coneco.com	Email		

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	STC-C3
Recommended Stormceptor Model	STC 450i
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	88
PSD	Fine Distribution
Rainfall Station	BLUE HILL

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	88		
STC 900	93		
STC 1200	93		
STC 1800	93		
STC 2400	95		
STC 3600	95		
STC 4800	96		
STC 6000	96		
STC 7200	97		
STC 11000	98		
STC 13000	98		
STC 16000	99		

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station				
State/Province	Massachusetts	Total Number of Rainfall Events	8652	
Rainfall Station Name	BLUE HILL	Total Rainfall (in)	2849.7	
Station ID #	0736	Average Annual Rainfall (in)	49.1	
Coordinates	42°12'44"N, 71°6'53"W	Total Evaporation (in)	221.6	
Elevation (ft)	630	Total Infiltration (in)	306.9	
Years of Rainfall Data	58	Total Rainfall that is Runoff (in)	2321.2	

Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Discharge (cfs)

Drainage Area			
Total Area (acres)	0.33		
Imperviousness %	89.0		
Water Quality Objective	9		
TSS Removal (%)	80.0		
Runoff Volume Capture (%)			
Oil Spill Capture Volume (Gal)			
Peak Conveyed Flow Rate (CFS)			
Water Quality Flow Rate (CFS)			

0.000	0.	.000	
Up Stream	Flow Diversi	on	
Max. Flow to Stormce	eptor (cfs)		
Design Details			
Stormceptor Inlet Inve	rt Elev (ft)		
Stormceptor Outlet Invert Elev (ft)			
Stormceptor Rim E			
Normal Water Level Ele			
Pipe Diameter ((in)		
Pipe Materia			
Multiple Inlets (Y/N)	No	
Grate Inlet (Y/I	N)	Yes	

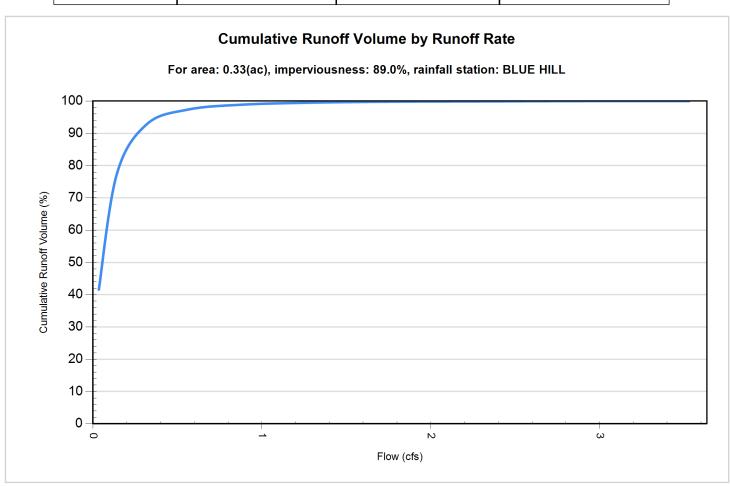
Up Stream Storage

Storage (ac-ft)

Particle Size Distribution (PSD)

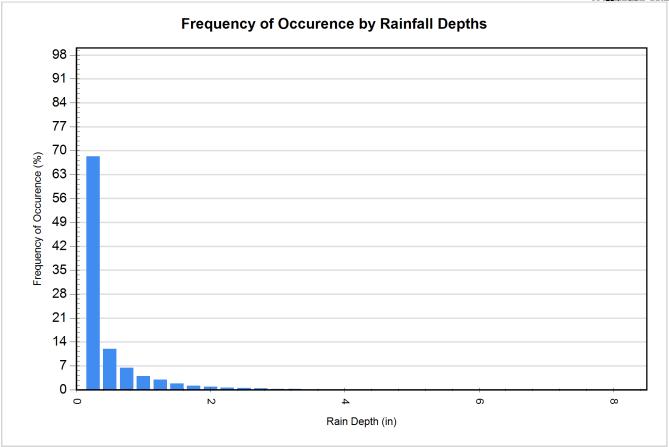
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

Fine Distribution				
Particle Diameter (microns)	Distribution %	Specific Gravity		
20.0	20.0	1.30		
60.0	20.0	1.80		
150.0	20.0	2.20		
400.0	20.0	2.65		
2000.0	20.0	2.65		

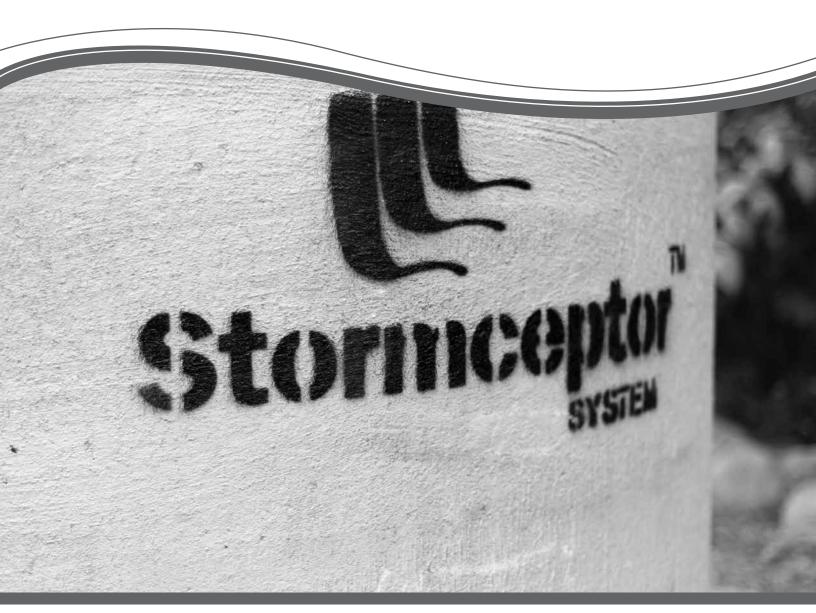


Site Name STC-C3				
Site Details				
Drainage Area		Infiltration Parameters		
Total Area (acres)	0.33	Horton's equation is used to estimate infiltration		
Imperviousness %	89.0	Max. Infiltration Rate (in/hr) 2.44		
		Min. Infiltration Rate (in/hr) 0.4		
Surface Characteristics		Decay Rate (1/sec) 0.00055		
Width (ft)	240.00			
Slope %	2	Regeneration Rate (1/sec) 0.01		
Impervious Depression Storage (in)	0.02	Evaporation		
Pervious Depression Storage (in)	0.2	Daily Evaporation Rate (in/day) 0.1		
Impervious Manning's n 0.015		Dry Weather Flow		
Pervious Manning's n	0.25	Dry Weather Flow (cfs) 0		
Maintenance Frequency	У	Winter Months		
Maintenance Frequency (months) > 12		Winter Infiltration 0		
	TSS Loadin	ng Parameters		
TSS Loading Function				
Buildup/Wash-off Parameters		TSS Availability Parameters		
Target Event Mean Conc. (EMC) mg/L		Availability Constant A		
Exponential Buildup Power		Availability Factor B		
Exponential Washoff Exponent		Availability Exponent C		
		Min. Particle Size Affected by Availability (micron)		

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (cfs)	Runoff Volume (ft³)	Volume Over (ft³)	Cumulative Runoff Volume (%)	
0.035	1202458	1691130	41.6	
0.141	2235854	657116	77.3	
0.318	2683070	209701	92.8	
0.565	2817892	74716	97.4	
0.883	2861872	30713	98.9	
1.271	2879127	13436	99.5	
1.730	2886930	5634	99.8	
2.260	2890323	2236	99.9	
2.860	2891608	952	100.0	
3.531	2892211	348	100.0	



Rainfall Event Analysis				
Rainfall Depth (in)	No. of Events	Percentage of Total Events (%)	Total Volume (in)	Percentage of Annual Volume (%)
0.25	5908	68.3	386	13.6
0.50	1039	12.0	381	13.4
0.75	555	6.4	344	12.1
1.00	349	4.0	301	10.6
1.25	262	3.0	292	10.3
1.50	154	1.8	211	7.4
1.75	104	1.2	168	5.9
2.00	75	0.9	140	4.9
2.25	48	0.6	102	3.6
2.50	43	0.5	102	3.6
2.75	33	0.4	87	3.0
3.00	17	0.2	49	1.7
3.25	18	0.2	56	2.0
3.50	8	0.1	27	0.9
3.75	7	0.1	25	0.9
4.00	4	0.0	15	0.5
4.25	1	0.0	4	0.1
4.50	4	0.0	18	0.6
4.75	3	0.0	14	0.5
5.00	1	0.0	5	0.2
5.25	1	0.0	5	0.2
5.50	4	0.0	21	0.7
5.75	2	0.0	11	0.4
6.00	4	0.0	23	0.8
6.25	0	0.0	0	0.0
6.50	0	0.0	0	0.0
6.75	1	0.0	7	0.2
7.00	1	0.0	7	0.2
7.25	2	0.0	14	0.5
7.50	0	0.0	0	0.0
7.75	1	0.0	8	0.3
8.00	1	0.0	8	0.3
8.25	0	0.0	0	0.0
8.25	2	0.0	17	0.6



For Stormceptor Specifications and Drawings Please Visit: https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

Stormceptor® STC Owner's Manual

Table of Contents

TITLE	. SECTION
Stormceptor Overview	1
Stormceptor Operation and Components	2
Stormceptor Identification	3
Stormceptor Inspection and Maintenance	4
Recommended Stormceptor Inspection Procedure	
Recommended Stormceptor Maintenance Procedure	
Contact Information	5

For patent information, go to www.ContechES.com/ip.

Your selection of a Stormceptor® means that you have chosen the most recognized and efficient stormwater oil/sediment separator available for protecting the environment. Stormceptor is a pollution control device often referred to as a "Hydrodynamic Separator (HDS)" or an "Oil Grit Separator (OGS)", engineered to remove and retain pollutants from stormwater runoff to protect our lakes, rivers and streams from the harmful effects of non-point source pollution.

1 – Stormceptor Overview

Stormceptor is a patented stormwater quality structure most often utilized as a treatment component of the underground storm drain network for stormwater pollution prevention. Stormceptor is designed to remove sediment, total suspended solids (TSS), other pollutants attached to sediment, hydrocarbons and free oil from stormwater runoff. Collectively the Stormceptor provides spill protection and prevents non-point source pollution from entering downstream waterways.

Key benefits of Stormceptor include:

- Removes sediment, suspended solids, debris, nutrients, heavy metals, and hydrocarbons (oil and grease) from runoff and snowmelt.
- Will not scour or re-suspend trapped pollutants.
- Provides sediment and oil storage.
- Provides spill control for accidents, commercial and industrial developments.
- Easy to inspect and maintain (vacuum truck).
- "STORMCEPTOR" is clearly marked on the access cover (excluding inlet designs).
- Relatively small footprint.
- 3rd Party tested and independently verified.
- Dedicated team of experts available to provide support.

Model Types:

- STC (Standard)
- EOS (Extended Oil Storage)
- OSR (Oil and Sand Removal)
- MAX (Custom designed unit, specific to site)

Configuration Types:

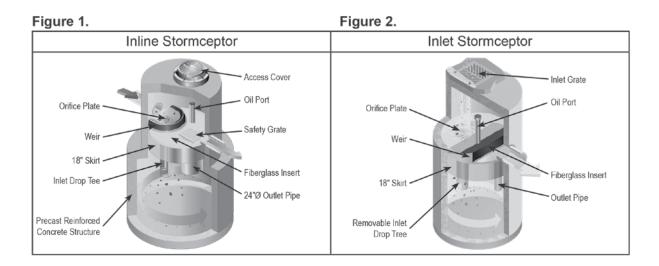
- Inlet unit (accommodates inlet flow entry, and multi-pipe entry)
- In-Line (accommodates multi-pipe entry)
- Submerged Unit (accommodates the site's tailwater conditions)
- Series Unit (combines treatment in two systems)

PLEASE MAINTAIN YOUR STORMCEPTOR

To ensure long-term environmental protection through continued performance as originally designed for your site, Stormceptor must be maintained, as any stormwater treatment practice does. The need for maintenance is determined through inspection of the Stormceptor. Procedures for inspection are provided within this document. Maintenance of the Stormceptor is performed from the surface via vacuum truck.

If you require information about Stormceptor, or assistance in finding resources to facilitate inspections or maintenance of your Stormceptor please call Contech at 1-800-338-1122.

2 – Stormceptor Operation and Components


Stormceptor is a flexibly designed underground stormwater quality treatment device that is unparalleled in its effectiveness for pollutant capture and retention using patented flow separation technology. Stormceptor creates a non-turbulent treatment environment below the insert platform within the system. The insert diverts water into the lower chamber, allowing free oils and debris to rise, and sediment to settle under relatively low velocity conditions. These pollutants are trapped and stored below the insert and protected from large runoff events for later removal during the maintenance procedure.

With thousands of units operating worldwide, Stormceptor delivers reliable protection every day, in every storm. The patented Stormceptor design prohibits the scour and release of captured pollutants, ensuring superior water quality treatment and protection during even the most extreme storm events. Stormceptor's proven performance is backed by the longest record of lab and field verification in the industry.

Stormceptor Schematic and Component Functions

Below are schematics of two common Stormceptor configurations with key components identified and their functions briefly described.

- Manhole access cover provides access to the subsurface components
- Precast reinforced concrete structure provides the vessel's watertight structural support
- **Fiberglass insert** separates vessel into upper and lower chambers
- Weir directs incoming stormwater and oil spills into the lower chamber
- Orifice plate prevents scour of accumulated pollutants
- Inlet drop tee conveys stormwater into the lower chamber
- **Fiberglass skirt** provides double-wall containment of hydrocarbons
- Outlet riser pipe conveys treated water to the upper chamber; primary vacuum line access port for sediment removal
- Oil inspection port primary access for measuring oil depth and oil removal
- Safety grate safety measure to cover riser pipe in the event of manned entry into vessel

3 - Stormceptor Identification

Stormceptor is available in both precast concrete and fiberglass vessels, with precast concrete often being the dominant material of construction.

In the Stormceptor, a patented, engineered fiberglass insert separates the structure into an upper chamber and lower chamber. The lower chamber will remain full of water, as this is where the pollutants are sequestered for later removal. Multiple Stormceptor model (STC, OSR, EOS and MAX) configurations exist, each to be inspected and maintained in a similar fashion.

Each unit is easily identifiable as a Stormceptor by the trade name "Stormceptor" embossed on each access cover at the surface. To determine the location of "inlet" Stormceptor units with horizontal catch basin inlet, look down into the grate as the Stormceptor insert will be visible. The name "Stormceptor" is not embossed on inlet models due to the variability of inlet grates used/approved across North America.

Once the location of the Stormceptor is determined, the model number may be identified by comparing the measured depth from the fiberglass insert level at the outlet pipe's invert (water level) to the bottom of the tank using Table 1.

In addition, starting in 1996 a metal serial number tag containing the model number has been affixed to the inside of the unit, on the fiberglass insert. If the unit does not have a serial number, or if there is any uncertainty regarding the size of the unit using depth measurements, please contact your local Contech Representative for assistance.

Sizes/Models

Typical general dimensions and capacities of the standard precast STC, EOS and OSR Stormceptor models are provided in Tables 1 and 2. Typical rim to invert measurements are provided later in this document. The total depth for cleaning will be the sum of the depth from outlet pipe invert (generally the water level) to rim (grade) and the depth from outlet pipe invert to the precast bottom of the unit. Note that depths and capacities may vary slightly between regions.

Table 1. Stormceptor Dimensions - Insert to Base of Structure		
STC Model	Insert to Base (in.)	
450	60	
900	55	
1200	71	
1800	105	
2400	94	
3600	134	
4800	128	
6000	150	
7200	134	
11000*	128	
13000*	150	
16000*	134	

Λ	1-	+-	_

^{1.} Depth Below Pipe Inlet Invert to the Inside Top Base Slab can vary slightly by manufacturing facility, and can be modified to accommodate specific site designs, pollutant loads or site conditions. Contact your local representative for assistance.

Table 2. Storage Capacities				
STC Model	Hydrocarbon Storage Capacity (gal)	Sediment Capacity (ft³)		
450	86	46		
900	251	89		
1200	251	127		
1800	251	207		
2400	840	205		
3600	840	373		
4800	909	543		
6000	909	687		
7200	1059	839		
11000*	2797	1089		
13000*	2797	1374		
16000*	3055	1677		

Notes

4 – Stormceptor Inspection and Maintenance

Regular inspection and maintenance is a proven, cost-effective way to maximize water resource protection for all stormwater pollution control practices, and is required to insure proper functioning of the Stormceptor. Both inspection and maintenance of the Stormceptor is easily performed from the surface. Stormceptor's patented technology has no moving parts, simplifying the inspection and maintenance process.

Please refer to the following information and guidelines before conducting inspection and maintenance activities.

When is inspection needed?

- Post-construction inspection is required prior to putting the Stormceptor into service.
- Routine inspections are recommended during the first year of operation to accurately assess the sediment accumulation.
- Inspection frequency in subsequent years is based on the maintenance plan developed in the first year.
- Inspections should also be performed immediately after oil, fuel, or other chemical spills.

When is maintenance cleaning needed?

 For optimum performance, the unit should be cleaned out once the sediment depth reaches the recommended maintenance sediment depth, which is approximately 15% of the unit's total storage capacity (see Table 3). The frequency should be adjusted based on historical inspection results due to variable site pollutant loading.

- Sediment removal is easier when removed on a regular basis at or prior to the recommended maintenance sediment depths, as sediment build-up can compact making removal more difficult.
- The unit should be cleaned out immediately after an oil, fuel or chemical spill.

What conditions can compromise Stormceptor performance?

- If construction sediment and debris is not removed prior to activating the Stormceptor unit, maintenance frequency may be reduced.
- If the system is not maintained regularly and fills with sediment and debris beyond the capacity as indicated in Table 2, pollutant removal efficiency may be reduced.
- If an oil spill(s) exceeds the oil capacity of the system, subsequent spills may not be captured.
- If debris clogs the inlet of the system, removal efficiency of sediment and hydrocarbons may be reduced.
- If a downstream blockage occurs, a backwater condition may occur for the Stormceptor and removal efficiency of sediment and hydrocarbons may be reduced.

What training is required?

The Stormceptor is to be inspected and maintained by professional vacuum cleaning service providers with experience in the maintenance of underground tanks, sewers and catch basins.

For typical inspection and maintenance activities, no specific supplemental training is required

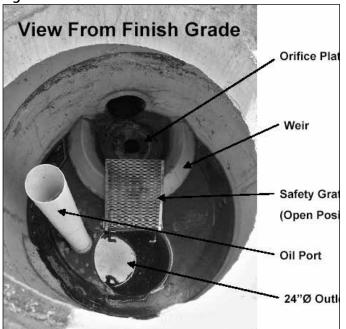
^{*}Consist of two chamber structures in series.

^{1.} Hydrocarbon and Sediment capacities can be modified to accommodate specific site design requirements, contact your local representative for assistance.

^{*}Consist of two chamber structures in series

Recommended Stormceptor Inspection Procedure:

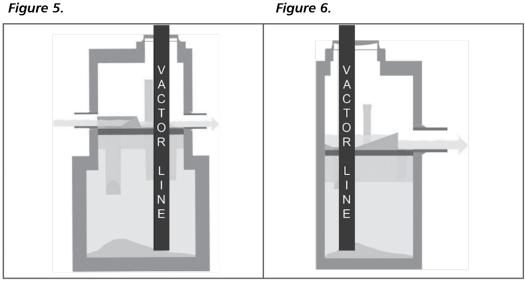
- Stormceptor is to be inspected from grade through a standard surface manhole access cover.
- Sediment and oil depth inspections are performed with a sediment probe and oil dipstick.
- Oil depth is measured through the oil inspection port, either a 4-inch or 6-inch diameter port.
- Sediment depth can be measured through the oil inspection port or the 24-inch diameter outlet riser pipe.
- Inspections also involve a visual inspection of the internal components of the system.


Figure 3.

What equipment is typically required for maintenance?

- Vacuum truck equipped with water hose and jet nozzle
- Small pump and tubing for oil removal
- Manhole access cover lifting tool
- Oil dipstick / Sediment probe with ball valve (typically ³/₄-inch to 1-inch diameter)
- Flashlight
- Camera
- Data log / Inspection Report
- Safety cones
- Hard hats, safety shoes, safety glasses, chemical-resistant gloves, and hearing protection for service providers
- Gas analyzer, respiratory gear, hoist and safety harness for specially trained personnel if confined space entry is required

Figure 4.



Recommended Stormceptor Maintenance Procedure

Maintenance of Stormceptor is performed using a vacuum truck. No entry into the unit is required for maintenance. DO NOT ENTER THE STORMCEPTOR CHAMBER unless you have the proper personal safety equipment, have been trained and are qualified to enter a confined space, as identified by local Occupational Safety and Health Regulations (e.g. 29 CFR 1910.146). Without the proper equipment, training and permit, entry into confined spaces can result in serious bodily harm and potentially death. Consult local and/or state regulations to determine the requirements for confined space entry. Be aware, and take precaution that the Stormceptor fiberglass insert may be slippery. In addition, be aware that some units do not have a safety grate to cover the outlet riser pipe that leads to the submerged, lower chamber.

- Ideally maintenance should be conducted during dry weather conditions when no flow is entering the unit.
- Stormceptor is to be maintained through a standard surface manhole access cover.
- Insert the oil dipstick into the oil inspection port. If oil is present, pump off the oil layer into separate containment using a small pump and tubing.
- Maintenance cleaning of accumulated sediment is performed with a vacuum truck.
 - For 6-ft diameter models and larger, the vacuum hose is inserted into the lower chamber via the 24-inch outlet riser pipe (See Fig. 5).
 - For 4-ft diameter model, the removable drop tee is lifted out, and the vacuum hose is inserted into the lower chamber via the 12-inch drop tee hole (See Fig. 6).

Figure 5.

- Using the vacuum hose, decant the water from the lower chamber into a separate containment tank or to the sanitary sewer, if permitted by the local regulating authority.
- Remove the sediment sludge from the bottom of the unit using the vacuum hose. For large Stormceptor units, a flexible hose is often connected to the primary vacuum line for ease of movement in the lower chamber.
- Units that have not been maintained regularly, have surpassed the maximum recommended sediment capacity, or contain damaged components may require manned entry by trained personnel using safe and proper confined space entry procedures.

What is required for proper disposal?

The requirements for the disposal of material removed from Stormceptor units are similar to that of any other stormwater treatment Best Management Practices (BMP). Local guidelines should be consulted prior to disposal of the separator contents. In most areas the sediment, once dewatered, can be disposed of in a sanitary landfill. It is not anticipated that the sediment would be classified as hazardous waste. This could be site and pollutant dependent. In some cases, approval from the disposal facility operator/agency may be required.

What about oil spills?

Stormceptor is often implemented in areas where there is high potential for oil, fuel or other hydrocarbon or chemical spills. Stormceptor units should be cleaned immediately after a spill occurs by a licensed liquid waste hauler. You should also notify the appropriate regulatory agencies as required in the event of a spill.

What if I see an oil rainbow or sheen at the Stormceptor outlet?

With a steady influx of water with high concentrations of oil, a sheen may be noticeable at the Stormceptor outlet. This may occur because a hydrocarbon rainbow or sheen can be seen at very small oil concentrations (< 10 ppm). Stormceptor is effective at removing 95% of free oil, and the appearance of a sheen at the outlet with high influent oil concentrations does not mean unit is not working to this level of removal. In addition, if the influent oil is emulsified, the Stormceptor will not be able to remove it. The Stormceptor is designed for free oil removal and not emulsified or dissolved oil conditions.

What factors affect the costs involved with inspection/maintenance?

The Vacuum Service Industry for stormwater drainage and sewer systems is a well-established sector of the service industry that cleans underground tanks, sewers and catch basins. Costs to clean Stormceptor units will vary. Inspection and maintenance costs are most often based on unit size, the number of units on a site, sediment/oil/hazardous material loads, transportation distances, tipping fees, disposal requirements and other local regulations.

What factors predict maintenance frequency?

Maintenance frequency will vary with the amount of pollution on your site (number of hydrocarbon spills, amount of sediment, site activity and use, etc.). It is recommended that the frequency of maintenance be increased or reduced based on local conditions. If the sediment load is high from an unstable site or sediment loads transported from upstream catchments, maintenance may be required semi-annually. Conversely once a site has stabilized, maintenance may be required less frequently (for example: two to seven year, site and situation dependent). Maintenance should be performed immediately after an oil spill or once the sediment depth in Stormceptor reaches the value specified in Table 3 based on the unit size.

Table 3. Recommended Sediment Depths Indicating Maintenance		
STC Model	Maintenance Sediment Depth (in)	
450	8	
900	8	
1200	10	
1800	15	
2400	12	
3600	17	
4800	15	
6000	18	
7200	15	
11000*	17	
13000*	20	
16000*	17	

Notes:

Replacement parts

Since there are no moving parts during operation in a Stormceptor, broken, damaged, or worn parts are not typically encountered. Therefore, inspection and maintenance activities are generally focused on pollutant removal. However, if replacements parts are necessary, they may be purchased by contacting your local Contech Representative or call 800-338-1122.

The benefits of regular inspection and maintenance are many – from ensuring maximum operation efficiency, to keeping maintenance costs low, to the continued protection of natural waterways – and provide the key to Stormceptor's long and effective service life.

^{1.} The values above are for typical standard units.

^{*} Per structure.

Stormceptor Inspection and Maintenance Log
Stormceptor Model No:
Allowable Sediment Depth:
Serial Number:
Installation Date:
Location Description of Unit:
Other Comments:

5 – Contact Information

Questions regarding the Stormceptor can be addressed by contacting your local Contech representative or by calling 800-338-1122.

SUPPORT

- Drawings and specifications are available at www.ContechES.com.
- Site-specific design support is available from our engineers.

©2019 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, and earth stabilization products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.